HyperSQL User Guide
HyperSQL Database Engine 2.5.0

Edited by , Blaine Simpson, and Fred Toussi

HyperS@L

HyperSQL User Guide: HyperSQL Database Engine 2.5.0
by , Blaine Simpson, and Fred Toussi

$Revision: 5941 $
Publication date 2019-06-02

Copyright 2002-2019 Blaine Simpson, Fred Toussi and The HSQL Development Group. Permission is granted to distribute this document without
any alteration under the terms of the HSQL DB license. Y ou are not allowed to distribute or display this document on the web in an altered form.

HyperS@L

Table of Contents

(= = o PP PPPTPPPPPPTRTPPIN Xiii
Available formats for this dOCUMENTiiiiiiii e e et e Xiii
1. RUNNING @Nd USING HYPErSOL ..ttt ettt ettt ettt e et e et e e et et e e e e et e e e eaba e eeeees 1
F g1 oTo (¥ oi (oo H PSP SPPT TR PTR 1
THhE HSQLDB Jar ...ttt ettt e et e ettt e ettt e e et et e e e e e e e e e naa s 1
RUNNIiNG Datalase ACCESS TOOISciiitieeiiii ettt e e e et e e e 2
A HYPErSOQL D@BDASEiiiitiieiiii ettt ettt 2
IN-Process Access 10 Datalase CalalOgSeveeruneiiiiiieeieii et e et e et e et et e e e et eeeere e eeees 3
S V= Y oo (= PP PP TR PPPRTT 4
HYPErSOL HSQL SBIVEN oottt et r e e 4
HYPErSOL HT TP SoIVE oottt eeas 5
HYPErSQL HTTP SEIVIEL ..ot 5
Connecting t0 & Datalase SEIVENuuiiiii e e 5
SECUNLY CONSIAEIBIIONS ...evvueiiiiti ettt ettt ettt e e et e e et et e e e e et e e e esb e e eentaaeeees 6
USING MUILIPIE DELADASESvueiieiieeeeet ettt et e et e et e e 6
ACCESSING the DBeeiiii ettt et e e et e et et e e et e e et et e e e e e aees 6
CloSING the DaADESE ...ttt ettt ettt ettt et e et et e e e e a e aeee 7
Creating 8 NEW Datahaseccoouuuiiiiiiii ettt et 7
2. SOQL LBNJUBOE .eeneeiiiitieet ettt ettt ettt ettt et et eaes 9
SEANAAIAS SUPPOIT ..ttt ettt ettt e ettt e ettt e ettt s e e et et e e e e et e et e et e eenb e aees 9
SQL Data @nd TalESeeeiiiiiiiii e e aa s 9
TEMPOIAY TADIES .oeeiiiii et ettt e e et e ettt e ettt e e e en e e e ent e aees 10
PErSISIENt TaIES .ot e 10
ShOrt GUIAE tO DEEA TYPES ...ueeeiiieeeeet ettt ettt e e e et e e et e e et e e e eaaa s 11
Data TYPES aNA OPEIELIONScieertneeeitie ettt ettt et e ettt e e et et e e a et e eb e e e eea e et enaa e eennnns 12
U1 o Y o PP SUPPTTRPPPPPTT 12

2 Tolo] L= I Y o= PP PPT TR PUPPT 14
CharaCter SIING TYPES ..iiiiiiiiiii ettt ettt e et e e et eeeaa s 14
BiNary SING TYPES ettt ettt e e et e et e e et e e 15

=TT 1o T Y o= TSP PPPPTTUUPPIN 16

(o] oI D - - T PSP PPPPTT 17
Storage and Handling of JaVa ODJECEScvevuuneiiiiiiee ettt 17

Type Length, Precision and SCAIEiiiiiiiiiiiiii e 18
D= S (DT Y 0= PP PPPPPT 19
F01C= Y= I Y 1SS SRR 23
L (= 7 TP PP PTPPPI 26
ATTAY DEFINITION ... ettt e et e b 26
ATTAY REFEIENCE .ottt ettt e e et e e e e 28
ATTEY OPEIBLIONS ... eeetti i eeeeit ettt ettt ettt ettt et et e et e et e et e b r et e et et e ra e e eraans 28
INdexes and QUENY SPEEAiiiiii ittt et 30
Query Processing and OPtiMmIiSaLiONcoeeuenoiiiii ettt e et e et e e eneas 31
INdexes and CONGITIONSuiieiii ittt e et eeab e e e e 31
INAEXES AN OPEFBLIONS ...evtieieiii ettt ettt ettt e e e et e e e et e e e et e e e eaa s 32
Indexes and ORDER BY, OFFSET and LIMIT ..o 32

3. SeSSIONS AN TFANSACHIONSeeeieeieeii ettt ettt ettt e et e et e et et r e et et e e e e et e e e e et as 34
OVEIVIBIV ettt e et e e et e e e e et e e et et e e e et e e et e e e et et e b e e e s 34
Session Attributes and Variables oo 34
SESSION ATIITDULES ...t ettt ettt e ettt e e e et e e e e e e eene 35
SESSION VATBDIES ... 35
SESSION TADIES ..t 35
Transactions and CoNCUITENCY CONIOL ... oiieiiiieiiii e eeeens 36

HyperS@L HyperSQL User Guide

IV J 0= = =3 o o Vo N 36

Two Phase Locking with Snapshot 1S0lationcocouiiiiiiiiii e, 37

(oo Q@001 =01 o) 11 1024 = 37
Locks in SQL ROULINES aNA THQUEIS ..uuivuniiiiiieiii et et e e e e e e e e e e e e e e e e e e et e e st eeaneees 37
Y PSP 37
Choosing the Transaction MOGElccoouiiiiiii e e e eaeees 38
Schema and Database ChanQeoovviiiiiiii e e e e e e e e e e et e et e e anaees 39
SiMUItaneous ACCESS t0 TaADIEScovniiii i 39

A =TT o RS =S o] P 39
Session and Transaction COoNtrol SEAEMENTScovuiiiiieiiiee e e e e e e e et eaa e eeas 40
4, Schemas and Database ObJECLSuuiiiiiieiii i e e e e e e e e e e et e e st e e et e e et e e san e eatneaeanaes 47
L@ = oY T 47
Schemas and SChemMa ObJECESvuiiiiieiii e e e e e e e et e et e et e e aaneeeeas 47
NAMES AN REFEIENCES ...iitiiiiiii et e e e e e e e e e e e e et e et e e et e eaneees 48

(O T 1 o (= S = £ 48
(001 = 0] 1 = 49

[T 1T o A I 1= 50

o 0= U 50
NUMDEr SEOUENCES ...iituiiii et ee e et e e e e e e e e e e e e e et e e et e et e e et e e et e e etn e ean e eateesnneaetnaes 50
1= o 1= PP 52

R T=.T 53
(0] 015 1 = (= 53
NS = 1 0] PPN 54
10 10 =S 54
01U 11 == 55

g0 L= PPN 55

Y 101011 0 T PRSP 55
Statements for Schema Definition and Manipulationcoooviieiiiiiiiiii e 55
Common Elements and StAEMENEScoouiiiiiiiiiii e e e e e 55
R a1 Te [o= v £ 57
(0010010010 (1 aTe [@ o)1= ot £ 57
o 0= 0= O = 1o o 58

LI o LT @1 (=" o o 59
Temporal System-Versioned Tablesand SYSTEM _TIME Periodcooevviiiiiiiveiiiiciiineceeenn, 64
QIR o =TS 1 o P 65

I o =Y =TT o101 = o) o S 67
View Creation and Manipulalionc..cioiuiiiiiieeiiiee e e e e e e e e ean e aen 71
Domain Creation and Manipulationcccouiiiiiiiiiie e e e e e e e e e eees 72

QI Te (o L= Ot = o] o 73

L 01011 LI O (== 1 o o IS 74

S (U< Tl @ = 1o o PPN 77

SQL Procedure SEAatEMENEeiuueiiiii e e e e e e e e e et e e e e et e e et e e e et e e e e aaaae 78
Other Schema OBJECt CrEatioNiiiiiiiii e e e e e e aen 79

The INformation SChEMAiouiii e e e e e e e e e et e aa e eeas 82
Predefined Character Sets, Collations and DOMAINScccccuiiiiiiiiiiiieiiiecin e e 83
Views in INFORMATION SCHEMA ...ttt a e 83
Visibility of INFOrMationoiiiiiii e e e e 83

N E= 10 = 10117 4 o o 83

(D e W Y/ 0 =3 1010 117 1 Lo o I 84

[oo [0 Tox g o) 10! o N 84
Operations INFOMMIBEIONiiii i e e e e e e e e e e e et e e et e e et e e et e et e eateeanneees 84

S @IS = 0o = o YT 84

LI 1= T A I = P 92
L@ = oY1 T 92

HyperS@L HyperSQL User Guide

The IMPIEMENTALION ... e e e e e e e et e et e e et e e et e et e eaa e eatneeeanaeees 92
DefiNItion Of TaDIEScoviiii i e e e 92
Scope and REASSIGNIMENTouuiii e e e e e e e e e e e e et e et e e et e e aaeeaenns 92
Null Values in Columns of Text TahlESccvuiiiiiiiiii e e 93
(0001110 8= 1 (o o IR 93
Disconnecting TexXt TaDlESc.uiiiiiiiiiii e e e e e e e e e e 95

L= TSI L= o =P 95

Text File Global ProPertiESiiiiiiiiiii e e e e e e e e et e et e e e eaens 96

I =157 o 0] 1 PPN 97

L oo @] L1 (o) 98

L@ = oY T 98

Authorizations and ACCESS CONIOluiiiiieiii e e e e e e e e et e eaaneeeees 98
BUIIt-IN ROIES @N0 USES ...iiiiiiii i e e e e e e e e e e et e e e e eaes 99
Listing Users and ROIESiiiiiiiii e e e e e e e e aaaas 100
ACCESS RIGNES .ot e 100
Fine-Grained Data ACCESS CONIOl .. .c.uiiieiiiii e e e 101

Statements for Authorization and AcCess CONLIOlcivuiiiiiiie e 102

7. Data ACCESS AN0 ChaANGE ..ovvuiiiiiiiii it e e et e e e e e e e e e e e e e et e e e e e e et aaanas 106

(@< oV PR 106

CUrSOrs AN RESUIT SEES ...iiiiiiiii i e e e e e e e e e e e e et e et e e aaeeeenns 106
COolUMNS BN ROWS ...oiiiciii e e e e e e e e e e e et e e et eeaa e eanas 106
[N F= Y7o = (o o PP 106
10T oTo = = o |11 PSP 107
S = 1S Y71 Y 108
[oo =1 1) Y PP 108
N U (o7 120 T 108
BT O @ = o 7= T PSP 108
IDBC Pala@MELErS ..oevtiieiiiii e ettt e ettt et e et e e et e e e e et e e e e et e e e et e e e e tt e e e et e e e et 109
JDBC and Data Change StAEMENESuiiiiiiiiii ennaas 109
JDBC Callahle SEBEMENEuiieeiii et e et e et aera s 110
JDBC REUMNED VAIUES ...ouiiiiiiiiii ettt e et e e et s e e et e e e et e 110
(LN 16 o gl D= o - (o) o 111

Y1z G = = 1.1 £ 111
[(= = | 111
REFEIENCES, BIC. ittt 115
V= 0T o 1= o o T 116
[(=0 107 =S SRR 122
PN oo =0 = (= U ot 0] 129
Other Syntax ElEMENIS ..uui i e e e e e e et e et e e et e e aeaaees 130

D = W AN oo eSS 1= 1 = 1K 132
S C o B = 1= 141 0| A 133
L=/ . 1= PP 133
ST o U= S 133
QUETNY SPECITICAIION .ivvtiiii e e e e e e e e e e e e e e et e et e e e e een s 134
I o L= T 1= o) o 134
I o] 0= N 1= o PP 138
S == o o o PP 140
(0= o (o) o P 140
(0001001 1=o I @0 11 o] 01 140
NN = 0101 o 140
(CTgoTN o 1 a0 [@) o= - 1o o 141
N0 0 1= = 4 Lo o [142
S = @01 - 1o 0 TP 142
With Clause and RECUISIVE QUENIES .. .c.uuiiiiiiiii e e e e e e e e e e e e e e eaans 142

HyperS@L HyperSQL User Guide

(@01 YA T q] =S o] o I 143

L@ 0 = 1 oo P 144

S o1 o PP 145

Data Change SEAatEMENESvuiiiiieii i eeii e e e e e e e e e e e e e et e e et e e et s e e e e eat e eatneeeanaeetnnees 146
(D c L (S = < 1 1< o | A PSP 146
TIUNCAEE SEALEMENT ...ttt e et e e e e e et e et e en e e e e e e e e eneenes 146

F s S = < 111 1| PP PP 147
L0l b= LIS = 1 1= | 149

Y o I = = 0 11 | PP RPTPRUPRPRN 150
DiagNOStICS AN SEALEivviiiiiiciii e e e e e e e e e e e e e e e e e e e r e a e aaa 151
S @ I 1Y =0 I o1] == 153
ROULINE DEFINITIONiiiiiiiee et e e e e e e e et e e e e et e e e e et e e e eaen s 154
ROULINE CRaraCLENISHICS ..vuiiiiiiiiiee ettt e e et e e e e et e e ettt e e e ea bt e e e eat s e e eeatnaaeaes 156

SQL Language ROULINES (PSM)uuiiiiiiiii et e e e e e e e e e e e e et e et e et e e aaeeaens 158
Advantages and DiSAOVANTAJESevvuniiiiiiiiieeiieee e e e e e e e e e e e et e e e e aaan 158
ROULING SEBEEIMENES ... iiiiiiii ettt e e et e et e e e et e e e et e e e e et e e e ernn e 159
(00410 To 10 a0 IS 10101 o | P 160
TaDIE VarahDIES .o 160
VAIBDIES .ot e e e aaes 161
LU = o £ T PPN 161

[= 0= PRSPPI 162
ASSIGNMENT SEALEMENT oottt e e e e e e e e e e e e et e e e e et e e et e e eaneeeees 163
Select Statement : SINGIE ROW ... e e e e e e e e aes 164
FOMEl Pal@MELES ...ovuiiiiiiiii ettt e e e et e e et s e e et e e e eann e e eenanns 164
e 1 0 IS = =101 1 £ PSP 165
[terated FOR SEAIEMENTciiiiiiiiiii e et e ettt e e e et e e e e et e e e eatn s e e eertnneeaees 165
ConditioNal SEAIEMENES ...iiiii e e e aaaa 166
S (U IS = = 11 o | PP 167
(000011 {0 S = (< 01101 PSP 168

L TS a0 (= o] 1o g 168
ROULINE POlYMOIPRISIM .ouiiii e e e e e e et e e et e e e eees 169
Returning Data From ProCEAUIESiiiuiiiiii e e e e e e e e e aaaas 169
RECUISIVE ROULINES ...ttt et e et e e et e e e et e e e e et eeeeren s 171

Java Language ROULINES (SQL/JRT) .uuuiiiiiiiiii it e e e e e e e e e et e e et e e et eeaaeeaanas 172
POlYMOIPRISIN oo 173

Java Language ProCEAUIESiiiiueiiiie i e e e e e e e e e e et e e et e e et e e et eeaaeeaanaes 174

JaVA SEAEIC MEINOOS ... iieiiiei et e e 175
[0 T= oA U o o o g PP 176
Securing Access to Classes and ROULINESo.uuiiiiiiiiiiiiiie e 176
LAY 14 21 o 177
User-Defined Aggregate FUNCHIONSiiiiiiiiii e e e e e e e e et e e ea e ean s 177
Definition of AQQregate FUNCHIONSccuuiiiiiiiie e e e e e e e e e e e e e e e e e eaen 177

SQL PSM AQQregate FUNCLIONSuuiiiiiieiiiieiiiee e e e e e e e e e e e e et e e e e et eeetnaeeanaees 178

Java AQOregate FUNCLIONSciiuiiii e e e e e e e e e e et e e et e e e e eeas 180

LS N 4 oo 1= PN 181
L@ N = PP 181
T O I T o L= £ N 181

F N I I ¢ [0 = S 182
NS I =N N @ i I (T fo = £ S 182

QI 00 L= (o] 0= = 182
B0 10 L= Y= | 182

LT =011 = /PP 182

I Te (o L= e v o T 02T PP 183
REFEIENCES 10 ROWS ...ttt et e et e e e e e e eees 183

Vi

HyperS@L HyperSQL User Guide

B oo L= @0 o [o) o P 183
TrIQOEr ACHON 1N SOL ..ttt e e e e e e e e e e e et e et e e e e et eaaa s 183
TRIQOEr ACHON 1N JAVA ..uiiiiiiii i e e e e e e e e et e e e e e et e e e e aanas 184

I oo L= Ot =" o) o 185
10. BUIE TN FUNCLIONS ...ttt e et r e e et e e et r e e et s e e e eet e e e e et s e e e enenneeeennns 188
L@ N = PP 188
String and Binary String FUNCHIONSc.uuiiiiiiii e e e e e e e e e e e e e e e anes 189
[N W T 0 T o g (o PP 195
Date Time and Interval FUNCHIONSocuueiiiiiie e et e e e e eaanns 200
Functions to RePOrt the TIME ZONE.civuniiiiii e e eaa s 200
Functions to Report the Current DatEliMEiviiiiiiiiiiii e e e e e 201
Functions to Extract an Element of a Daletimec.ovviiiiiiiiiiiiiiiece e 202
Functions for Datetime AFthMELICcoouviiiii e 204
Functions to Convert or FOrmat a Datelimeooviiiiiiiiiiiiiie e 207

F N 4 = YA U 1 o PR 210
GENErAl FUNCHIONS ..ooiiii ittt e et e e et r e e e et e e e et e e e e et e e e eatn s 211
VS (= 1 U o 214
S s (g Y = = e 1= T o | PPN 218
Koo [=S0) @ o< = o) o [218
(D= o o) 001= 0 A I 0= P 218

(D = 0= s R N === R P 218
L= o =TSSP 219
=T LI @ o= ot £ P 219

(D= o107 011= 0 o] (= S 220
ACID, Persistence and Reliabilityc..ooiiiiiiii e 220
Atomicity, Consistency, Isolation, Durabilitycccoceiiiiiiiiiii e 221
VS0 1O o= = o] PP 221
Temporal System-Versioned TablESuiiiiiiiii e 222
Backing Up and Restoring Database CafalOgscivvnieiueiiiieiiie e e e e e e e e e e et e e e eaaas 222
MaKiNG ONliNE BACKUDPSuuiiiiiiiiiie e e e e e e e e e e e e e et e e et e e e eanaas 223
Offline Backup ULIlIty SYNAXcovuiiiiiiiiii e e e e e e e e e 223
MaKing OffliNE BACKUPSuuiiiiiiiiiiiii e e e e e e e e e e e e e et e et e e e e e aaneeaens 223
EXaMINING BaCKUDS o.vniiiiiieiii et e e e e e e e e e e e e e e e et e e et e e eanaee 224
RESIONNG @ BaACKUD .vviiiiiiii e 224
ENCrypted Dal@hasgScouuiiiiiieiii it e e e e e e e 224
Creating and Accessing an Encrypted DatabhaSeovevviiiiiiiiiiiiicci e 224
S0 1c =0 I O] 1S T L= o) 1P 225

S ol 10105 Lo (= = 1 o S 225
Monitoring Datahase OPEratiONSciviuuieiiiieiiii et e e e e e e e e e e e e et e e e et e e et e e arnaeeees 225
External Statement Level MONITONNGccuuiiiiiieiiiiiii e e e e e e e e aaas 226
Internal Statement Level MONITOININGcovuniiiiieii e e e e e e e e e aaaas 226
Internal EVENt MONITOIINGiiiteii e e e e e e e e e e e e et e e et e e et e e et e e e e eanaes 226
(oo 720 IF-a o I 01 G oo o 1o [226
Server Operation MONITOTINGiiui e e e e e e e e e e et e et e e aneeeanns 226

D = 0= s I = o U Y 226
Basic Security RECOMMENUALIONSuuiiiiiiiiii e e e e e e e e e aaas 227
Beyond Security DEfAUITScoouiiiiii e 227
AULhentication CONEIOIiiiiii e e e e et eeaaa s 228

2 < 111 0 PP PTPPT 228
VS (= 1O o= = o] PP 228

Data Management SEalBMENTSiuuiiiie e 230

(D = 0= s IS = 1 o 231

SQL ConformanCe SEINGSuueeiuniiiiieiiee it e e e e e e e e e et e e e e et e e et e et e ean e eatneeannnns 235
Cache, Persistence and FileS SEtiNGScvvviiiiiiiii e e 244

Vii

HyperS@L HyperSQL User Guide

PN T 1= 1o o IS xRN 248

12. Compatibility With Other DBIMS ..ot e et e e et e e e eaa s 250
(0010 1] o TH LY @ 1YL= 4/ = 250
PostgreSQL ComMPatibilitycouuiiiiei e 250
MySQL ComPatibility ...ooeiiiiiii e 251
Firebird CompatibDilityccouiiiiiii e e 253
Apache Derby CompatibDilityiiiiiii e 253
Oracle Compatibilityooiii e 253

[252 @0 001 7= 11 11 11 254

MS SQL Server and Sybase Compatibilitycooiiiiiiiiiiii e 254

G o 0707 1 =P 256
L0010 1< o1 T U PP 256
Variables 1IN ConNECION URL oiiiiiiiiiiii et e e e e et e e et e e e e ae s 257
Properties for Individual CONNECLIONScouuiiiiiiiii e e e e e e eeaas 257
Properties for the Dat@hasecccuiiiiiiiiiii e e 260
SQL ConformancCe PrOPETIESc.uuiiiieiiiiie et e e e e e e e e e e e et e e et eean s 261
Database Operations PrOPEITIESccivuiiiiieiiie e e e e e e e e e e e e ean s 266
Database File and Memory PropertieSciiiiiiiiiiieiie et e e e e e 268
L0 o 0 0= 1 11 273

Y S (= L e (0] 0= (1= 274
14. HyperSQL Network LISLENEIS (SEIVEIS) ...ciivuiiiiieiiii et e et e et e e e e e e e e e e e s e e e e et e e et e e aaeeeeas 276
IS = 0= PP SPP 276
HY DB S SV ottt e 276
HYPErSQL HTTP SEIVEr .ottt e e ettt e ettt e e e et s e e e eabn e e eestnaeeeenes 276
HYPErSQL HTTP SEIVIEL ooeuniiiiii e e e e e e e eaanns 277
Server and WeD SErVer PrOPErtiESccuuiiiiiiiiiii et e e e e e e e 277
Starting a Server from your APPIICAIONiiiuniiiii e e e e e e 279
Shutting down a Server from your APPIICAIONociuiiiiii e e e 279
Allowing a Connection to Open or Create aDatabasecovevviiiiiiiiiiieiir e 279
Specifying Database Properties at SErver Startooeviiiiiiiiii e 280
B IS 0 Y/ o PN 280
S (U= 1= 1 £ PP 280
Encrypting your JDBC CONMNECLIONiiitiiiiii e e e e e e e e e e e e e e e e e aaaas 280
MaKing a Private-Key KEYSIOr®cciuuiiiiiiiiii e e e e e e e e e aanas 282
Automatic Server or WebServer startup on UNIX ... 283
NEIWOTK ACCESS COMEIOI ... iiitiee ettt e e e e et e e e e et e e e e et e e e eett e eeaeteaeaeees 283
15, HYPerSQL 0N UNIX it e et e e et e e e e et e e e e et e e e eete e e e eett s aeeeettnaeaeeennaeaenes 285
001 PP 285
TS = = o) o PP 285
Setting up Database Catalog and LIStENEroiiiniiiiiieiiie e e e e e e e e e e ees 287
ACCESSING YOUN DAADASEiviiiiii et e e e e e e et e e e e et e e e e e aans 288
Create additionNal ACCOUNESiiiiii i et e et e e et e e e et e e e et aeeeaaaaeeenanns 292
S a1 o[0T/ o P 293
Running Hsgldb as @ System DaEmMONoiiinieiiii e e e e e e e e e e e e et e e et e e eaaees 293
Portability of hsql db NIt SCIIPE ..ooevniic e 293

INit SCIIPt SEUP PrOCEAUIEeieiiiii e e e e e e e e e e eaas 293
Troubleshooting the TNt SCIIPL ...coveiii e 297
L0 =o 1 2o [P 298
SR D= o o)V 001= 010 T [299
MEMOTY N0 DISK USE ...iiiiiiiiiiiiii et e e e e e e e et e et e e et e e et e e et e e e eaaas 299
Table MemMOry AlIOCEIIONc.uuiiiii e e e e e e e e e et e e et e eanaas 299
Result Set Memory ALTOCALONcoiuiiii e e 299
Temporary Memory Use DUriNg OPErationSeevuuieiiieeiiieeiiiieeiieeeseeaie e e eeinaeeaneeeens 300

Data Cache Memory AIOCAHONcouuiiiiiiiii e e e e e e e e eanas 300

HyperS@L HyperSQL User Guide

Object Pool Memory ANIOCAtIONco.uiiiiiiei e e e e s 300

LOD MEMOIY USAgE ivtiiiiiiiii i e e e et e e e e e e e e e e e e e et e e et e e et e e et e e et e e aaneeeanas 301

USING NIO FIlE ACCESS .iviuiiiii et ettt e e et e e e e e e e e e e e et e e et e et 301

USING Tl SPBCES ...ivuniiiiiiiiii e e e e e e e e e et e e e e e 301

= W DI ES TS = oY U £ - 302

Using HyperSQL Without Logging Data Changeccccuuieiiiiiiiiiieiii e e 302

Bulk Inserts, Updates and DEIEIEScccvuiiiiiieiii e 302

Managing Database CONNECLIONSiiiiiieiiiieii e e e e e e e e e e e e e e et e e et e e aaneeeeas 303
Application Development and TESHINGuiiieiiiiiiiiie e e e e e e e e aens 303
Tweaking the Mode Of OPEralioNoiiieiiiiiiie e e e e e e e e e et e e et e e eanees 304
Embedded Databases in Desktop APPlICAtioNScovvniiiiiiiiie e 304

Embedded Databases in Server AppliCationSoovviiiiiiiiiiii e 305

Mixed Mode : Embedding a HyperSQL Server (LIStENEr)ccovviviiiieiiiieiiiieeiieeee e eeeeeae e 305

SEIVEN DABDASES ..vuiiiiitii ettt e e e et e et a e e aae 305

UpPGrading Dat@haSESccuuiiiiiiiii e et e e e e raa 305
Upgrading From Older VEISIONScouuiiiiiiiiiiee e e e e e e e e e e e et eean s 306

Manual Changes to the *.SCript Fileoiiiiiiii e 307

Backward Compatibility ISSUESiiiuiiiiiiiiiii e e e e e e e e e e e e e et e e e e e aneees 308
HyperSQL Dependency Settings for APPlICAIONSccevuiiiiiiiiii e 309
What VErsion 10 PUIL ..o 309

Using the HyperSQL Snapshot REPOSITONYcivuniiiiiiiiii e e e e e e e e e e e e e 309

R 010 =A< £ o] aTh o 311

y N I B =30 =YY 0] (oL PP 313
List of SQL Standard KEYWOITSuuiiiiiieiiiieiiii e e e e e e e e e e et e e et e e et e e st e e e e eaneeaen 313

List of SQL Keywords Disallowed as HyperSQL [dentifiersccooveviiiiiiiiiiinicii e, 314
Special FUNCHON KEYWOITScouiiiiiicii e e e e e e e e e e e e e et e e e e e eanas 315

B. HyperSQL Database FileS and RECOVEIYccouuiiiiiiiiiiii et e e e e e e e e e et e e aanees 316
(D 0= = T = PP 316

S - (=< S UPPSPPPI 316
0o o 1SS 317
Clean ShULHOWN ... it e et e e et e e e et e e e et e eeennns 317

= 1 Lo PSPPSR 318

L C S (0] PP PTTP PPN 318

C. BUIAING HSQLDB JAIS ...ciiitiiitiiiiisetieie s ettt e e ettt e e et s e e et e e et s e e e et e e e e et e e e e et e e e e et e eeeatnn s 319
001 PP 319
BUIlAiNg With Gradleoiiiiii e e e e e e e 319
Invoking a Gradle Build GraphiCallycccouiiiiiiiiiiii e 319

Invoking a Gradle Build from the Command Lineccoiiiiiiiiiiiiiiiiecii e, 322

L0 LS T 0T =" | = S 323

BUITAING WIth ANt e e e e e e e e e e et e et e et e e et e eaanaas 325

1@ o] =1 o T To 7Y o | S PPN 325

Building Hsgldb With ANt ..o e 325

Building for DIfferent JDKSuiiiiiiiii e e e e e e e e e e 326

Building With IDE COMPILEIS ..ovuiiiiiieii e e e e e e e e e et e e et e e et eeaaeeaanaees 326
HYPErSQL COOESWITCREr .. .ouiiiiii e e e e e e e e ean s 327
BUilding DOCUMENLEEIONuuiiiiiiiii i eeie e e e e e e e e e e e e e et e e et e e et e e e e e e st e e st e e et e eetneeannaees 328

D. HyperSQL With OpenOffiCeuuiiiiiiiii e e e e e e et e eaaees 330
HyperSQL With OpeNOffiCe ...vuiiiii i e e e e e e e e e ees 330
Using OpenOffice / LibreOffice as a Datahase TOOlc.ccuviiiiiiiiiiiiiii e 330
Converting .odb files to use With HyperSQL SEIVErociiiiiiiiiiiii e 330

I o Y o= @ I = R 124 P 331
1S I [T 1= PP 333
€1 o1c = I g o SRR 339

HyperS@L

List of Tables

1. Available formats of thiS AOCUMENTuiiiiiiiie e Xiii
10.1. TO_CHAR, TO_DATE and TO_TIMESTAMP format elementsccoevuiiiiiiiiinieiiiiinieeeiieeeenen 209
13.1. Memory Dat@hase URLoiiiiieiii et ettt e 256
13.2. File DAEDASE URL ...ttt ettt e ettt e et e e et e e et e e e e e aee 256
13.3. ReSOUICE Datahase URLuiiiiiiieiiee ettt ettt et e e enaaas 256
13.4. Server Database URLoouuiiiiiiiiiei ettt ettt ettt aaaas 257
13.5. USEr @N0 PASSWOITiieeiiiee ettt ettt ettt ettt et e et et r et e et e e e et e e e e e e eaan s 258
13.6. Closing old ResultSet when Statement iS reUSEAuuiiiiiiiiieiiii e 258
13.7. Column Names in IDBC RESUITSELcoouuiieiiiiiii e 258
13.8. In-memory LOBS from JDBC RESUITSELcooiuiiiiiiiiiieiie e e e 259
13.9. Empty batch in IDBC PreparedStatementcc.uuieeirtiieiiiie ettt e e e e 259
13.10. Creating NEW DatahDaseccceeuuieiiiii ettt ettt e et 259
13.11. AULOMELIC SHULAOWNeiieit et e ettt e et e ettt e e et et e e et eba e e e eebanaeeees 260
13.12. Validity CheCK PrOPEITY ...coveiiiiiiii it e ettt e e et e ettt e et et e e e et neeeeanaeaeee 261
13.13. Execution of Multiple SQL SEEEMENES EC.ovvuuiiiiiii i 261
13.14. SQL Keyword Use as [ENifIEriiiiiiiiiii e 261
13.15. SQL Keyword Starting with the Underscore or Containing Dollar Charactersccooevevvveiieennnnne. 261
13.16. Reference to COlUMNS NBIMESiiiiii ittt ettt e ettt e et e e b e e ebaa s 262
13.17. SiNG SIZE€ DECIAIAHONceiitieeeie ettt e e e e e e eba s 262
13.18. Type Enforcement in Comparison and ASSIGNMENTEccouuuieiiiiiieeeiiee e e et e e e e eeei e eeens 262
13.19. Foreign Key Triggered Data Changeoooieiiiiieiiiiieeiie ettt e et e e 262
13.20. Use Of LOB fOr LONGVAR TYPES ..iiitiiiiiiiii ettt ittt ettt ettt e e et e e et e e e e et e e e enan e aeenes 263
13.21. Type of string literalsin CASE WHEN ..ottt eaeaas 263
13.22. Concatenation With NULLuuiiiii e e e et e et e e e s 263
13.23. NULL in Multi-Column UNIQUE CONSIFAINESoveuueieteietiieiiieaeii e et e et eeii e e e eae e eeineeeenaees 263
13.24. Truncation or Rounding in TYPE CONVEISIONuueiiiiieiiiie ettt e et e e e 263
13.25. Decimal Scale of DiviSion and AV G VAIUESooiiiiiiiiiiiiie et 264
13.26. SUPPOIT FOr NBN VAIUES ...t ettt e e e e e e e ra s 264
13.27. SOrt order Of NULL VBIUESiiiiiiiieiiii ettt ettt ettt e e et e e e et e e e ena e eeees 264
13.28. Sort order of NULL values With DESCcooiiiiiiiiiiiec e 264
13.29. String Comparison With Paddingoioiiiiiiiiiii e e 264
13.30. Default Locale Language Collationieeeeuineeiiiie ettt 265
13.31. Case-Insensitive Varchar COIUMNSoouuiiiiiiii et e e e e e e e 265
13.32. Storage Of Live JaVa OBJECESuuiiiiiiieiiii ettt 265
13.33. Names of System Indexes Used fOr CONSIIAINTSuuuieiiiriieiiiiirieeieiie e e e e e 265
13.34. DB2 SEYI@ SYNEAX ..ceeitieeeiiti ettt ettt ettt ettt e e et e e et et e e e e e e et e e e et e eee 265
13.35. MSSOQL SEYIE SYNEAX ... eeeetiieeeeti ettt ettt ettt ettt e e e et e et et e et e et e e e erbe e eeenaas 266
13.36. MYSQL SEYIE SYNEBX .eevtueeieiiieeeeti ettt e ettt ettt e et et r e e et e et et e et e b e e e b 266
13.37. OFaCle SIYIE SYNLAX ...ceeeeiieeeei ettt ettt e e e e et e e e e et e e e 266
13.38. POStOreSQL SEYIE SYNLAXcieeeiieeiiii ettt ettt ettt ettt e e et e e eb s 266
13.39. DEfAUIT TADIE TYPE ettt ettt e ettt e ettt e e et et e e et et e e e e et e e e enaaaeeee 266
13.40. Transaction CONIOl IMOOEuuuiiiiii ettt e e e e e aaan s 267
13.41. Default 150lation LEVEl FOr SESSIONSccevuiieiiiiii ettt e e et eeeeaa e eees 267
13.42. Transaction RoIIback in DEAAIOCKcoiiiiiiiiii e 267
13.43. Transaction ROIIDACK ON INEEITUPLiiiii e e 267
13.44. Time Zone and INTEIVaAl TYPES ..oovuuiiiiii ettt ettt et et e e e an e e e ebe e eenees 267
13.45. Opening Datahase as R0 ONIYcooiuiiiiiii e e e eeaeens 268
13.46. Opening Database Without Modifying the FIleScoooiiiiiiii e 268
13.47. Huge database files and taleSoiiiiiiii e 268
13.48. EVENE LOGUING . .eettnieiittieeettt ettt ettt e ettt e e ettt e e et et e e et et e e et et e e et et e e et et e e e e et e e e e era s 268
1349, SQL LOGGING +ettuettetunetetttaeeeeti et eete e et e e et eet e et et t e et e et e et et b e et e eh e e et e b e e e e nb e e e aa e e enan s 268

HyperS@L HyperSQL User Guide

13.50. Temporary ReSUIt ROWS iN IMEMOIY uuiiiiiiii e e e e e e e e e e e e e et e e e e e e e ean s 269
13.51. UNUSEA SPACE RECOVEIY ..ivtiiiiiiiii et e e e e e e e e e e e e e e e e e e et e e et e e et e e e e e et e e et e eeannas 269
13.52. ROWS CaChed [N IMEMOIY ..uuiiiiiieii e e e e e e e e e e e e e e e e e e et e e et e e et e e et e e eaneeeanans 269
13.53. Size of ROWS CaChed iN MEMOIYiiiiiiiii et e e e e e e e e e e e e e et e e e eaaeees 269
13.54. Size Scale of DisSK Tahle SIOTAE ...vuiviiieiii e e e e e e e e e e e aanas 270
13.55. SiZe SCAle Of LOB SIOTAQE ..vvuiiivuieiiiiiiiieii e et e e et e e e e e e e e e e e e e et eeat e e e et e e et e e st e eaneeanns 270
13.56. Compression of BLOB and CLOB dalAocvvuieiiiieiiiieeiiiieeiieeei e et e et e eei s e s e s e esaneesnneeenes 270
13.57. Internal Backup of Database FilESccouuiiiiiiii e e 270
13.58. USE Of LOCK FIlE ittt ettt e et e e et e e e e et neeeatnnaeeennes 271
13.59. Logging Data Change SEateMENEScciiiiiiiiieiiii e e e e e e e e et e e e e e et e e e eaaeees 271
13.60. Automatic CheCKpPOINt FIEOUENCYovviiiiiieiii i e e e e e e e e e e e e e e et e e et e e eanaeees 271
13.61. Automatic Defrag at ChECKPOINTiiii i e e e e e e e e e e e et e e eanaaees 271
13.62. Compression Of the .SCIIPL fIlEiiue i e e e e 271
13.63. Logging Data Change StatementS FIEQUENCYcvvuuiiinieiiieiiiieeie e e e e e e e s s e et e e e e e et esaneeeanes 272
13.64. Logging Data Change StatementS FIEQUENCYcvvuniiiruieiiieiiiieeie e e e e e e e e s e e e e e e e et esaneeeanaes 272
13.65. Use of NIO for Disk Tahle SEOTagEuuieeinieiiiieiiie e e e e e e e e e e e e e e e an s 272
13.66. Use of NIO for Disk Table SEOTagEuieviuiiiiieiiie et e e e e e e e e e e e e anas 272
13.67. RECOVEIY LOQ PrOCESSING c.vuuiiiuiiiiiieiii et e et e et e e e e e e e e e e e e et e e et e e et eeat e e et e e st e eeaneeannaees 272
13.68. Default Properties for TEXT TablES ..u.iiiiiiii i e e e e e aaas 273
13.69. Forcing Garbage COllECHIONciiiiiii e e e e e e e e e eaa s 273
13.70. Crypt Property FOr LOBSuiiiiiiiiiiie et e e e e e e e ens 273
13.71. Cipher Key for ENCrypted Databaseccceuiiiiiiiiiii i e e e e e e e e e e e aees 273
13.72. Cipher Initialization Vector for Encrypted Databasecooeviiiiiiiiiiiii e 273
13.73. Crypt Provider Encrypted Datahasecc.uiiiiiiiiiiiiiii e 274
13.74. Cipher Specification for Encrypted Databaseccceuviiiiiiiiiiieii e 274
ST oo o 10T T =10 1=.11 P 274
G T = B I o = PP 274
A AN - V= W T 0T Lo o PP 275
14.1. common server and WEDSEIVEr PIrOPEITIESc.u.iiiiieiiii ean s 277
A = a1 oo o= 1= 278
14,3, WEDSEIVEr PrOPEITIES .iiuniiiiiiii ettt e e e et e et e e e e e e e e e et e et e e et e e et e e et e e et e e e e e et e e eraeernaaaes 278

Xi

HyperS@L

List of Examples

1.1. Java code to connect to the 10Cal NSOl SEIVErooui i e 5
1.2. Java code to connect to the 10Cal NP SEIVErooueiiiii e 5
1.3. Java code to connect to the local secure SSL hsgl and http SErVErSoeiiiiiiiieii e 6
1.4. specifying a connection property to shutdown the database when the last connection isclosed 7
1.5. specifying a connection property to disallow creating a new databaseccooveiiiiiiieiiiiiincc e, 8
3.1, User-defined Session VariahleSooiiiiieiii e 35
3.2. User-defined Temporary Session TahIESuiiiiiiiiiii et e 35
3.3. Setting TransaCtion CharaCteriStICSuuuueieiii ettt ettt ettt n e e e re e e enaens 41
34 LOCKING TADIES ...ttt e et et ettt ettt e et e e e e et e e e en e aae 42
35, ROIDACK ... e 43
3.6. Setting SESSION CharaCleiSlICSueiiitii ettt ettt e ettt e et e e e e ebe e e e eeneaeeees 43
3.7. Setting SESSION AULNOMIZALONcieiii ettt e et e e et e e e e ebe e eeees 44
3.8. SELtiNGg SESSION TIME ZONE ..uiieeiitie ettt ettt ettt e et e et e e e e et e e et et a e et et e e e e et naeeera s 44
4.1. inserting the next sequence value into @table rOWc.uuiiiiiiii i 50
4.2. numbering returned rows of a SELECT in sequential ordercoouiiiiiiiiiiiiiiiiiieei e 51
4.3. using the ast ValUe Of @ SEOUENCEceeiiiiiiiii ettt ettt et e e e e e b s 51
4.4. Column values which satisfy a 2-column UNIQUE CONSLraintc..ovieiiiiiniiiiiiiieeeiiieeecee e 54
11.1. Using CACHED tables for the LOB SCREMAuiiiiiiiieiiiii et 220
11.2. Creating a System-versioned tahleooiiiiiiiiiiii e 222
11.3. Displaying DBBECKUD SYNEEX uiieiiieieii ettt e e et eere s 223
11.4. Offline Backup EXAMPIEu ettt ettt 223
11.5. Listing a Backup With DDBACKUDcceuuuiiiiiieieii ettt et ettt et e e e eeaens 224
11.6. Restoring a Backup With DBBaCKUDcieieiiiiii e 224
11.7. SQL LOG EXAMPIE ..ttt ettt ettt et naaas 233
11.8. Finding foreign key rows with no parents after a bulk importcooooiiiiiiiiii e, 244
14.1. Exporting certificate from the SErver's KEYSIOrei oo 281
14.2. Adding a certificate to the Client KEYSIOrecoouuiiiiiiii e 281
14.3. Specifying your own trust store to @ JDBC CHENtcoouviiiiiiiiieiie e 281
14.4. Getting a pem-style private key into 8 JIKS KEYSIOIEiiiiiiiiiiiiiie e 282
14.5. Validating and Testing @an ACL fill@ ... 284
15.1. eXxample SOItO0I.FC STANZAcceeriieiiii ettt et 294
16.1. Using CACHED tables for the LOB SCREMAuiiiiiiiieiiiii et 301
16.2. MaNINVOKEr EXAMPIE ...ouiiiiii ettt ettt e et e et et e e e et e e e e e eees 305
16.3. HyperSQL Snapshot Repository DefiNitionco.uiiiiiiiiiiiiiiie e e 310
16.4. Sample Snapshot VY DEPENUENCYceeeiiieiiiii ettt et e et e e et e e eete e eeeee 310
16.5. Sample Snapshot Maven DEPENAENCYoiiieuiiiiiii e e e e enaens 310
16.6. Sample Snapshot Gradle DEPENTENCYccuvuieiiiiee et 310
16.7. Sample Snapshot ivy.xml loaded by Ivyxml pluginoooiiiiiii e 311
16.8. Sample Snapshot Groovy DependenCy, USING GraPEocceeruuieeriineeeiiie e et e et e e e e e e 311
16.9. Sample RaNGE 1VY DEPENUEINCY vuuiiiiiii ettt e e et e e et e e e et e e e eeaa e eeeees 311
16.10. Sample Range Maven DEPENUENCY uuiiiiiiiieeeeii ettt et e e e e e e e e e e eneans 311
16.11. Sample Range Gradle DEPENAENCYoeiiiriieiiiii ettt e e s 312
16.12. Sample Range ivy.xml loaded by IvyxXml plUGINoiiiiiii e 312
16.13. Sample Range Groovy Dependency, USING Grapeoocieuiuieeiiiiieeeiiiee et e et e e 312
C.1. Buiding the standard HSQLDB jar file With ANtiiiiii e 326
C.2. Example source code before CodeSWItCher ISTUNoveiiiiiiiii e 327
C.3. CodeSwitcher command liNE INVOCALIONccouuuniiiiiii e e e e e 327
C.4. Source code after COOESWITCNEr PrOCESSINGceevruiieiiitiee it e et e e ettt e et e e et et e e ert e e eentaaaeeees 327

Xii

HyperS@L

Preface

HyperSQL DataBase (HSQLDB) is a modern relational database manager that conforms closely to the SQL:2016
Standard and JDBC 4 specifications. It supports all core features and many of the optional features of SQL:2016.

The first versions of HSQLDB were released in 2001. Version 2, first released in 2010, includes a complete rewrite
of most parts of the database engine.

This documentation covers HyperSQL version 2.5.0. This documentation is regularly improved and updated. The
latest, updated version can be found at http://hsgldb.org/doc/2.0/

If you notice any mistakes in this document, or if you have problems with the procedures themselves, please use the
HSQL DB support facilities which are listed at http://hsgldb.org/support

Available formats for this document

This document is available in severa formats.

Y ou may be reading this document right now at http://hsgldb.org/doc/2.0, or in adistribution somewhere else. | hereby
call the document distribution from which you are reading this, your current distro.

http://hsgldb.org/doc/2.0 hosts the latest production versions of all available formats. If you want a different format of
the same version of the document you are reading now, then you should try your current distro. If you want the latest
production version, you should try http://hsgldb.org/doc/2.0.

Sometimes, distributions other than http://hsgldb.org/doc/2.0 do not host all available formats. So, if you can't access
the format that you want in your current distro, you have no choice but to use the newest production version at http://
hsgldb.org/doc/2.0.

Table 1. Available for mats of this document

format your distro at http://hsgldb.org/doc/2.0

Chunked HTML index.html http://hsgldb.org/doc/2.0/guide/
All-in-oneHTML | guide.html http://hsgldb.org/doc/2.0/guide/guide.html
PDF guide.pdf http://hsgldb.org/doc/2.0/guide/guide.pdf

If you are reading this document now with a standalone PDF reader, the your distro links may not work.

Xiii

index.html
http://hsqldb.org/doc/2.0/guide/
guide.html
http://hsqldb.org/doc/2.0/guide/guide.html
http://hsqldb.org/doc/2.0/guide/guide.pdf

HyperS@L

Chapter 1. Running and Using HyperSQL

Fred Toussi, The HSQL Development Group
$Revision: 5966 $

Copyright 2002-2019 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2019-06-02

Introduction

HyperSQL Database (HSQLDB) is a modern relational database system. Version 2.5.0 is the latest release of the
all-new version 2 code. Written from ground up to follow the international 1SO SQL:2016 standard, it supports the
complete set of the classic features, together with optional features such as stored procedures and triggers.

HyperSQL version 2.5.0 is compatible with Java 8 or later. Versions of the HSQLDB jar that are compiled with JDK
6 are also available. Those versions are numbered 2.3.7 to distinguish the capability differences.

HyperSQL is used for development, testing and deployment of database applications.

Standard compliance is the most unique characteristic of HyperSQL. There are severa other distinctive features.
HyperSQL can provide database access within the user's application process, within an application server, or as a
separate server process. HyperSQL can run entirely in memory using dedicated fast memory structures as opposed
to ram disk. HyperSQL can use disk persistence in a flexible way, with reliable crash-recovery. HyperSQL is the
only open-source relational database management system with a high-performance dedicated lob storage system,
suitable for gigabytes of lob data. It is also the only relational database that can create and access large comma
delimited files as SQL tables. HyperSQL supports three live switchable transaction control models, including fully
multi-threaded MV CC, and is suitable for high performance transaction processing applications. HyperSQL is also
suitable for businessintelligence, ETL and other applications that process large data sets. HyperSQL has awiderange
of enterprise deployment options, such as XA transactions, connection pooling data sources and remote authentication.

New SQL syntax compatibility modes have been added to HyperSQL. These modes allow a high degree of
compatibility with several other database systems which use non-standard SQL syntax.

HyperSQL is written in the Java programming language and runs in a Java virtual machine (JVM). It supports the
JDBC interface for database access.

An ODBC driver is also available as a separate downl oad.

This guide covers the database engine features, SQL syntax and different modes of operation. The Server,
JDBC interfaces, pooling and XA components are documented in the JavaDoc. Utilities such as SglTool and
DatabaseM anager are covered in a separate Utilities Guide.

The HSQLDB Jar

The HSQLDB jar package, hsgldb.jar, is located in the /lib directory of the ZIP package and contains several
components and programs.

Components of the HSQL DB jar package

e HyperSQL RDBMS Engine (HSQLDB)

HyperS@L Running and Using HyperSQL

e HyperSQL JDBC Driver
» Database Manager (GUI database access tool, with Swing and AWT versions)

The HyperSQL RDBMS and JDBC Driver provide the core functionality. DatabaseManagers are general-purpose
database access tools that can be used with any database engine that has a JDBC driver.

Anadditional jar, sgltool .jar, contains Sgl Tool, command line database accesstool. Thisisageneral purpose command
line database access tool that can be used with other database engines as well.

Running Database Access Tools

The tools are used for interactive user access to databases, including creation of a database, inserting or modifying
data, or querying the database. All tools are run in the normal way for Java programs. In the following example the
Swing version of the Database Manager is executed. The hsql db. j ar islocated in the directory . . / | i b relative
to the current directory.

‘ java -cp ../lib/hsqgldb.jar org.hsqgl db.util.DatabaseManager Swi ng

If hsgl db. j ar isinthe current directory, the command would change to:

‘ java -cp hsqldb.jar org.hsqgldb.util.DatabaseManager Swi ng

Main classes for the HSQL DB tools
e org. hsqgl db. util . Dat abaseManager
e org. hsqgl db. util . Dat abaseManager Swi ng

When atool is up and running, you can connect to a database (may be a new database) and use SQL commands to
access and modify the data.

Tools can use command line arguments. You can add the command line argument --help to get a list of available
arguments for these tools.

Double clicking the HSQLDB jar will start the DatabaseM anagerSwing application.

A HyperSQL Database

Each HyperSQL database is called a catalog. There are three types of catalog depending on how the datais stored.

Types of catalog data

» mem: stored entirely in RAM - without any persistence beyond the VM processs life
« file: storedin filesystem files

* res. stored in aJavaresource, such as a Jar and always read-only

All-in-memory, mem: catal ogs can be used for test data or as sophisticated caches for an application. These databases
do not have any files.

A file: catalog consists of between 2 to 6 files, all named the same but with different extensions, located in the same
directory. For example, the database named "test" consists of the following files:

e test.properties

HyperS@L Running and Using HyperSQL

e test.script

* test.log

test. data

t est. backup
e test.|obs

The propertiesfile contains afew settings about the database. The script file contains the definition of tables and other
database objects, plus the data for non-cached tables. The log file contains recent changes to the database. The data
file contains the data for cached tables and the backup file is a compressed backup of the last known consistent state
of the data file. All these files are essential and should never be deleted. For some catalogs, the t est . dat a and
t est . backup fileswill not be present. In addition to those files, a HyperSQL database may link to any formatted
text files, such as CSV lists, anywhere on the disk.

While the "test” catalog is open, at est . | og file is used to write the changes made to data. Thisfile is removed at
anormal SHUTDOWN. Otherwise (with abnormal shutdown) thisfileis used at the next startup to redo the changes.
Atest. Il ck fileisalso usedtorecord the fact that the database is open. Thisis deleted at a normal SHUTDOWN.

Note

When the engine closes the database at a shutdown, it creates temporary files with the extension . new
which it then renames to those listed above. These files should not be deleted by the user. At the time of
the next startup, all such fileswill be renamed or deleted by the database engine. In some circumstances,
at est . dat a. xxx. ol d iscreated and deleted afterwards by the database engine. The user can delete
theset est . dat a. xxx. ol d files.

A res. catalog consists of the files for a small, read-only database that can be stored inside a Java resource such as a
ZIP or JAR archive and distributed as part of a Java application program.

In-Process Access to Database Catalogs

In general, JIDBC is used for all access to databases. This is done by making a connection to the database, then using
various methods of thej ava. sql . Connect i on object that is returned to access the data. Accessto an in-process
database is started from JDBC, with the database path specified in the connection URL. For example, if the file:
database nameis"testdb" and itsfiles are located in the same directory as where the command to run your application
was issued, the following code is used for the connection:

‘ Connection ¢ = DriverManager. get Connecti on("jdbc: hsql db: file:testdb", "SA", ""); ‘

The database file path format can be specified using forward slashes in Windows hosts as well as Linux hosts. So
relative paths or paths that refer to the same directory on the same drive can be identical. For exampleif your database
directoryinLinuxis/ opt / db/ cont ai ni ng a dat abase testdb (with fil es naned testdb. *),
then the database file path is /opt/db/testdb. Ifyoucreate anidentical directory structure on
the C. drive of a Windows host, you can use the same URL in both Windows and Linux:

‘ Connection ¢ = DriverManager. get Connecti on("jdbc: hsql db:file:/opt/db/testdb", "SA", ""); ‘

When using relative paths, these paths will be taken relative to the directory in which the shell command to start the
Java Virtual Machine was executed. Refer to the Javadoc for JDBCConnecti on for more details.

Paths and database names for file databases are treated as case-sensitive when the database is created or the first
connection is made to the database. But if a second connection is made to an open database, using a path and name

HyperS@L Running and Using HyperSQL

that differs only in case, then the connection is made to the existing open database. This measure is necessary because
in Windows the two paths are equivalent.

A mem: database is specified by the mem: protocol. For mem: databases, the path is simply a name. Several mem:
databases can exist at the same time and distinguished by their names. In the example below, the database is called
"mymemdb":

‘ Connection ¢ = Driver Manager . get Connection("j dbc: hsql db: nem nymendb”, "SA", ""); ‘

A res: database, is specified by theres: protocol. Asit isaJavaresource, the database pathisaJavaURL (similar to the
path to aclass). In the example below, "resdb” isthe root name of the database files, which existsin the directory "org/
my/path" within the classpath (probably inaJar). A Javaresourceisstored in acompressed format and is decompressed
in memory when it is used. For this reason, ares: database should not contain large amounts of data and is always
read-only.

‘ Connection c = DriverMnager. get Connecti on("jdbc: hsqgl db: res: org. ny. pat h. resdb", "SA", ""); ‘

Thefirst timein-process connection is made to adatabase, some general data structures areinitialised and afew hel per
threads are started. After this, creation of connections and callsto JDBC methods of the connections execute asif they
are part of the Java application that is making the calls. When the SQL command "SHUTDOWN" is executed, the
global structures and helper threads for the database are destroyed.

Note that only one Java process at a time can make in-process connections to a given file: database. However, if the
file: database has been made read-only, or if connections are made to ares: database, then it is possible to make in-
process connections from multiple Java processes.

Server Modes

For most applications, in-process access is faster, as the data is not converted and sent over the network. The main
drawback is that it is not possible by default to connect to the database from outside your application. As a result
you cannot check the contents of the database with external tools such as Database Manager while your application
is running.

Server modes provide the maximum accessibility. The database engine runs in a VM and opens one or more in-
process catalogs. It listens for connections from programs on the same computer or other computers on the network.
It translates these connections into in-process connections to the databases.

Several different programs can connect to the server and retrieve or updateinformation. Applications programs (clients)
connect to the server using the HyperSQL JDBC driver. In most server modes, the server can servean unlimited number
of databases that are specified at the time of running the server, or optionally, as a connection request is received.

A Sever mode is also the preferred mode of running the database during development. It allows you to query the
database from a separate database access utility while your application is running.

There are three server modes, based on the protocol used for communications between the client and server. They are
briefly discussed below. More details on serversis provided in the HyperSQL Network Listeners (Servers) chapter.

HyperSQL HSQL Server

This is the preferred way of running a database server and the fastest one. A proprietary communications protocol is
used for this mode. A command similar to those used for running tools and described above is used for running the
server. Thefollowing example of the command for starting the server startsthe server with one (default) database with
files named "mydb.*" and the public name of "xdb". The public name hides the file names from users.

‘ java -cp ../lib/hsqgldb.jar org. hsql db. server. Server --database.O file:nydb --dbnane.0 xdb ‘

HyperS@L Running and Using HyperSQL

The command line argument - - hel p can be used to get alist of available arguments.

HyperSQL HTTP Server

This method of access is used when the computer hosting the database server is restricted to the HTTP protocol. The
only reason for using this method of accessis restrictions imposed by firewalls on the client or server machines and it
should not be used wherethere are no such restrictions. The HyperSQL HTTP Server isaspecial web server that allows
JDBC clientsto connect viaHTTP. The server can also act as a small general-purpose web server for static pages.

Torunan HTTP server, replace the main class for the server in the example command line above with the following:

‘ org. hsql db. server. WebSer ver ‘

The command line argument - - hel p can be used to get alist of available arguments.

HyperSQL HTTP Servlet

This method of access also uses the HTTP protocol. It is used when a servlet engine (or application server) such
as Tomcat or Resin provides access to the database. The Servliet Mode cannot be started independently from the
servlet engine. The Ser vl et class, in the HSQLDB jar, should be installed on the application server to provide the
connection. The database file path is specified using an application server property. Refer to the sourcefile src/
org/ hsql db/ server/ Servl et.java toseethedetails.

Both HTTP Server and Servlet modes can be accessed using the JDBC driver at the client end. They do not provide
aweb front end to the database. The Servlet mode can serve multiple databases.

Please note that you do not normally use this mode if you are using the database engine in an application server. In
this situation, connections to a catalog are usually made in-process, or using a separate Server

Connecting to a Database Server

When a HyperSQL server is running, client programs can connect to it using the HSQLDB JDBC Driver contained
in hsql db. j ar. Full information on how to connect to a server is provided in the Java Documentation for
JDBCConnecti on (locatedinthe/ doc/ api docs directory of HSQLDB distribution). A common example is
connection to the default port (9001) used for the hsgl: protocol on the same machine:

Example 1.1. Java code to connect to thelocal hsgl Server

try {
Cl ass. forNane("org. hsqgl db. j dbc. JDBCDri ver");
} catch (Exception e) {
Systemerr.println("ERROR failed to | oad HSQ.DB JDBC driver.");
e.printStackTrace();
return;

}

Connection c¢ = DriverManager. get Connecti on("jdbc: hsqgl db: hsql : //1 ocal host/ xdb", "SA", "");

If the HyperSQL HTTP server is used, the protocol is http: and the URL will be different:

Example 1.2. Java code to connect to the local http Server

‘ Connection c¢ = DriverManager. get Connecti on("jdbc: hsqgl db: http://I1 ocal host/xdb", "SA", ""); ‘

Note in the above connection URL, there is no mention of the database file, as this was specified when running the
server. Instead, the public name defined for dbname.O is used. Also, see the HyperSQL Network Listeners (Servers)
chapter for the connection URL when there is more than one database per server instance.

HyperS@L Running and Using HyperSQL

Security Considerations

When aHyperSQL server isrun, network access should be adequately protected. Source | P addresses may berestricted
by use of our Access Control List feature, network filtering software, firewall software, or standalone firewalls. Only
secure passwords should be used-- most importantly, the password for the default system user should be changed
from the default empty string. If you are purposefully providing datato the public, then the wide-open public network
connection should be used exclusively to access the public data via read-only accounts. (i.e., neither secure data nor
privileged accounts should use this connection). These considerations also apply to HyperSQL servers run with the
HTTP protocol.

HyperSQL provides two optional security mechanisms. The encrypted SSL protocol , and Access Control Lists .
Both mechanisms can be specified when running the Server or WebServer. On the client, the URL to connect to an
SSL server is dlightly different:

Example 1.3. Java code to connect to the local secure SSL hsgl and http Servers

Connection ¢
Connection ¢

Dri ver Manager . get Connecti on("j dbc: hsql db: hsql s: / /I ocal host/ xdb", "SA", "");
Dri ver Manager . get Connecti on("j dbc: hsql db: https://I ocal host/xdb", "SA", "");

The security features are discussed in detail in the HyperSQL Network Listeners (Servers) chapter.

Using Multiple Databases

A server can provide connections to more than one database. In the examples above, more than one set of database
names can be specified on the command line. It is also possible to specify all the databasesina. pr operti es filg,
instead of the command line. These capabilities are covered in the HyperSQL Network Listeners (Servers) chapter

Accessing the Data

As shown so far, aj ava. sql . Connect i on object is always used to access the database. But the speed and
performance depends on the type of connection.

Establishing aconnection and closing it has some overheads, thereforeit is not good practiceto create anew connection
to perform a small number of operations. A connection should be reused as much as possible and closed only when
it is not going to be used again for along while.

Reuse is more important for server connections. A server connection uses a TCP port for communications. Each time
a connection is made, a port is allocated by the operating system and deallocated after the connection is closed. If
many connections are made from a single client, the operating system may not be able to keep up and may refuse
the connection attempt.

Ajava. sql . Connect i on object has some methods that return further j ava. sql . * objects. All these objects
belong to the connection that returned them and are closed when the connection is closed. These objects can be reused,
but if they are not needed after performing the operations, they should be closed.

Aj ava. sql . Dat abaseMet aDat a object is used to get metadata for the database.

A java.sql.Statenent object is used to execute queries and data change statements. A
j ava. sgl . St at ement can be reused to execute a different statement each time.

A java. sgl . Prepar edSt at enent object is used to execute a single statement repeatedly. The SQL
statement usually contains parameters, which can be set to new values before each reuse. When a
j ava. sql . Prepar edSt at ement object is created, the engine keeps the compiled SQL statement for
reuse, until the java. sql. PreparedStatenent object is closed. As a result, repeated use of a
j ava. sql . Prepar edSt at ement ismuch faster thanusing aj ava. sql . St at enent object.

HyperS@L Running and Using HyperSQL

A java.sql.Call abl eSt at enent object is used to execute an SQL CALL statement. The SQL
CALL statement may contain parameters, which should be set to new values before each reuse. Similar
to j ava. sql . Prepar edSt at enent, the engine keeps the compiled SQL statement for reuse, until the
j ava. sgl . Cal | abl eSt at enent object isclosed.

Ajava. sqgl . Connect i on object also has some methods for transaction control.
Theconmi t () method performsaCOVM T whilether ol | back() method performsaROLLBACK SQL statement.

The set Savepoi nt (String nane) method performs a SAVEPO NT <nane> SQL statement and returns
aj ava. sql . Savepoi nt object. Ther ol | back(Savepoi nt nane) method performs a ROLLBACK TO
SAVEPO NT <nane> SQL statement.

TheJavadocfor JDBCConnection , JDBCDriver , JDBCDatabaseMetadata JDBCResult Set
, JDBCSt at enent JDBCPr epar edSt at enent list all the supported JDBC methods together with
information that is specific to HSQLDB.

Closing the Database

All databases running in different modes can be closed with the SHUTDOWN command, issued asan SQL statement.

When SHUTDOWN is issued, all active transactions are rolled back. The catalog files are then saved in a form that
can be opened quickly the next time the catalog is opened.

A specia form of closing the database is via the SHUTDOWN COMPACT command. This command rewrites the
. dat a filethat containstheinformation stored in CACHED tablesand compactsit to itsminimum size. Thiscommand
should be issued periodically, especialy when lots of inserts, updates or deletes have been performed on the cached
tables. Changes to the structure of the database, such as dropping or modifying populated CACHED tables or indexes
also create large amounts of unused file space that can be reclaimed using this command.

Databases are not closed when the last connection to the databaseis explicitly closed viaJDBC. A connection property,
shut down=t r ue, can be specified on the first connection to the database (the connection that opens the database)
to force a shutdown when the last connection closes.

Example 1.4. specifying a connection property to shutdown the database when the last
connection isclosed

Connection ¢ = DriverManager. get Connecti on(
"jdbc: hsql db: file:/opt/db/testdb; shutdown=true", "SA", "");

Thisfeature is useful for running tests, where it may not be practical to shutdown the database after each test. But it
is not recommended for application programs.

Creating a New Database

When a server instance is started, or when a connection is made to an in-process database, a new, empty database is
created if no database exists at the given path.

With HyperSQL 2.0 the user name and password that are specified for the connection are used for the new database.
Both the user name and password are case-sensitive. (The exception isthe default SA user, whichisnot case-sensitive).
If no user name or password is specified, the default SA user and an empty password are used.

This feature has a side effect that can confuse new users. If a mistake is made in specifying the path for connecting
to an existing database, a connection is neverthel ess established to a new database. For troubleshooting purposes, you

HyperS@L Running and Using HyperSQL

can specify a connection property ifexists=t r ue to allow connection to an existing database only and avoid creating
anew database. In this case, if the database does not exist, theget Connect i on() method will throw an exception.

Example 1.5. specifying a connection property to disallow creating a new database

Connection c¢ = DriverManager. get Connecti on(
"jdbc: hsql db: file:/opt/db/testdb;ifexists=true", "SA", "");

A database has many optional properties, described in the System Management chapter. You can specify most of
these properties on the URL or in the connection properties for the first connection that creates the database. See the
Properties chapter.

HyperS@L

Chapter 2. SQL Language

Fred Toussi, The HSQL Development Group
$Revision: 5966 $

Copyright 2002-2019 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2019-06-02

Standards Support

HyperSQL 2.x supports the dialect of SQL defined by SQL standards 92, 1999, 2003, 2008, 2011 and 2016. This
means where afeature of the standard is supported, e.g. left outer join, the syntax isthat specified by the standard text.
Almost all syntactic features of SQL-92 up to Advanced Level are supported, as well as SQL:2016 core and many
optional features of this standard. Work isin progress for aformal declaration of conformance.

At the time of this release, HyperSQL supports the widest range of SQL Standard features among all open source
RDBMS.

Various chapters of this guide list the supported syntax. When writing or converting existing SQL DDL (Data
Definition Language), DML (DataManipulation Language) or DQL (Data Query Language) statementsfor HSQLDB,
you should consult the supported syntax and modify the statements accordingly. Some statements written for older
versions may have to be modified.

Over 300 words are reserved by the standard and should not be used as table or column names. For example, the
word POSITION isreserved asit is afunction defined by the Standardswith asimilar roleas St ri ng. i ndexOf ()
in Java. HyperSQL does not currently prevent you from using a reserved word if it does not support its use or can
distinguish it. For example CUBE is areserved words that is not currently supported by HyperSQL and is allowed as
atable or column name. Y ou should avoid using such names as future versions of HyperSQL are likely to support the
reserved words and may reject your table definitions or queries. The full list of SQL reserved wordsisin the appendix
Lists of Keywords .

There are several user-defined properties to control the strict application of the SQL Standard in different areas.
If you have to use areserved keyword as the name of a database object, you can enclose it in double quotes.

HyperSQL aso supports enhancements with keywords and expressions that are not part of the SQL standard.
Expressionssuchas SELECT TOP 5 FROM .. ,SELECT LIM T 0 10 FROM. .. orDROP TABLE nyt abl e
| F EXI STS are among such constructs.

Many print books cover SQL Standard syntax and can be consulted.

In HyperSQL version 2, all features of JDBC4 that apply to the capabilities of HSQLDB are fully supported. The
relevant JDBC classes are thoroughly documented with additional clarifications and HyperSQL specific comments.
See the JavaDoc for theor g. hsql db. j dbc. * classes.

SQL Data and Tables

Inan SQL system, all significant datais stored in tables and sequence generators. Therefore, thefirst step in creating a
databaseis defining thetablesand their columns. The SQL standard supportstemporary tables, which arefor temporary
data, and permanent base tables, which are for persistent data.

HyperS@L SQL Language

A HyperSQL database can bean all-in-memory mem: database with no automatic persistence, or afile-based, persistent
file: database.

Temporary Tables

Datain TEMPORARY tablesis not saved and lasts only for the lifetime of the session. The contents of each TEMP
tableis visible only from the session that is used to populate it.

HyperSQL supports two types of temporary tables.

The GLOBAL TEMPORARY typeisaschemaobject. It is created with the CREATE GLOBAL TEMPORARY TABLE
statement. The definition of the table persists, and each session has access to the table. But each session seesits own
copy of the table, which is empty at the beginning of the session.

TheLOCAL TEMPORARY typeisnot aschemaaobject. Itiscreated withthe DECLARE LOCAL TEMPORARY TABLE
statement. The table definition lasts only for the duration of the session and is not persisted in the database. The table
can be declared in the middle of a transaction without committing the transaction. If a schema name is needed to
reference these tables in a given SQL statement, the pseudo schema names MODULE or SESSI ON can be used.

When the session commits, the contents of all temporary tables are cleared by default. If the table definition statement
includes ON COMMIT PRESERVE ROWS, then the contents are kept when a commit takes place.

The rows in temporary tables are stored in memory by default. If the hsql db. result _max_nmenory_rows
property has been set or the SET SESSI ON RESULT MEMORY ROWS <r ow count > has been specified, tables
with row count above the setting are stored on disk.

Persistent Tables

HyperSQL supports the Standard definition of persistent base table, but defines three types according to the way the
datais stored. These are MEMORY tables, CACHED tables and TEXT tables.

Memory tables arethe default type whenthe CREATE TABLE command isused. Their dataisheld entirely in memory
but any change to their structure or contentsiswrittentothe*. 1 og and *. scri pt files. The*. scri pt fileand
the*. | og file are read the next time the database is opened, and the MEMORY tables are recreated with all their
contents. So unlike TEMPORARY tables, MEMORY tables are persistent. When the database is opened, all the data
for the memory tables is read and inserted. This process may take a long time if the database is larger than tens of
megabytes. When the database is shutdown, all the datais saved. This can also take along time.

CACHED tables are created with the CREATE CACHED TABLE command. Only part of their data or indexes is
held in memory, allowing large tables that woul d otherwise take up to several hundred megabytes of memory. Another
advantage of cached tables isthat the database engine takes less time to start up when a cached table is used for large
amounts of data. The disadvantage of cached tables is a reduction in speed. Do not use cached tables if your data
set is relatively small. In an application with some small tables and some large ones, it is better to use the default,
MEMORY mode for the small tables.

TEXT tables use a CSV (Comma Separated Value) or other delimited text file as the source of their data. You can
specify an existing CSV file, such as a dump from another database or program, as the source of a TEXT table.
Alternatively, you can specify an empty file to be filled with data by the database engine. TEXT tables are efficient in
memory usage as they cache only part of the text data and all of the indexes. The Text table data source can always
be reassigned to a different file if necessary. The commands are needed to set up a TEXT table as detailed in the Text
Tables chapter.

With all-in-memory mem: databases, both MEMORY table and CACHED tabledeclarations are treated asdeclarations
for MEMORY tables which last only for the duration of the Java process. In the latest versions of HyperSQL, TEXT
table declarations are allowed in al-in-memory databases.

10

HyperS@L SQL Language

Thedefault type of tablesresulting from future CREATE TABLE statements can be specified with the SQL command:

‘ SET DATABASE DEFAULT TABLE TYPE { CACHED | MEMCORY };

The type of an existing table can be changed with the SQL command:

| SET TABLE <tabl e name> TYPE { CACHED | MEMCRY };

SQL statements such as INSERT or SELECT access different types of tables uniformly. No change to statementsis
needed to access different types of table.

Short Guide to Data Types

Most other RDBMS do not conform to the SQL Standard in al areas, including data types, but they are gradually
moving towards Standard conformance. When switching from another SQL dialect, the following should be
considered:

* Numerictypes TINYINT, SMALLINT, INTEGER and BIGINT are types with fixed binary precision. These types
are more efficient to store and retrieve. NUMERIC and DECIMAL are types with user-defined decimal precision.
They can be used with zero scaleto store very largeintegers, or with anon-zero scale to store decimal fractions. The
DOUBLE typeisa64 bit, approximate floating point types. HyperSQL even allowsyou to storeinfinity in thistype.

» TheBOOLEAN typeisforlogical vauesand can hold TRUE, FALSE or UNKNOWN. Although HyperSQL allows
you to use one and zero in assignment or comparison, you should use the standard values for thistype.

» Character string types are CHAR(L), VARCHAR(L) and CLOB (here, L stands for length parameter, an integer).
CHAR isfor fixed width strings and any string that is assigned to this type is padded with spaces at the end. Do
not use this type for genera storage of strings. If you use CHAR without the length L, then it is interpreted as
a single character string. Use VARCHAR(L) for general strings. There are only memory limits and performance
implicationsfor the maximum length of VARCHAR(L). If the strings are larger than afew kil obytes, consider using
CLOB. The CLOB typesis for very large strings. Do not use this type for short strings as there are performance
implications. The CLOB type is a better choice for the storage of long strings. By default LONGVARCHAR isa
synonym for along VARCHAR and can be used without specifying the size. You can set LONGVARCHAR to
map to CLOB, withthesql . | ongvar _i s_| ob connection property or the SET DATABASE SQL LONGVAR
ISLOB TRUE statement.

 Binary string types are BINARY (L), VARBINARY (L) and BLOB. Do not use BINARY (L) unless you are storing
keys such as UUID. This type pads short binary strings with zero bytes. BINARY without the length L means a
single byte. Use VARBINARY (L) for general binary strings, and BLOB for large binary objects. Y ou should apply
the same considerations as with the character string types. By default, LONGVARBINARY is a synonym for a
long VARCHAR and can be used without specifying the size. Y ou can set LONGVARBINARY to map to BLOB,
withthesql . | ongvar _i s_| ob connection property or the SET DATABASE SQL LONGVARISLOB TRUE
Statement.

* TheBIT(L) and BITVARYING(L) types arefor bit maps. Do not use them for other types of data. BIT without the
length L argument means asingle bit and is sometimes used as alogical type. Use BOOLEAN instead of thistype.

e The UUID typeisfor UUID (also called GUID) values. The valueis stored as BINARY. UUID character strings,
aswell asBINARY strings, can be used to insert or to compare.

* The datetime types DATE, TIME and TIMESTAMP, together with their WITH TIME ZONE variations are
available. Read the details in this chapter on how to use these types.

e The INTERVAL typeisvery powerful when used together with the datetime types. Thisis very easy to use, but is
supported mainly by "big iron" database systems. Note that functionsthat add days or months to datetime values are

11

HyperS@L SQL Language

not really asubstitute for the INTERVAL type. Expressionssuch as(dat ecol - 7 DAY) > CURRENT_DATE
are optimised to use indexes when it is possible, while the equivalent function calls are not optimised.

e The OTHER type is for storage of Java objects. If your objects are large, serialize them in your application and
store them as BLOB in the database.

* The ARRAY type supportsall base types except LOB and OTHER types. ARRAY data objects are held in memory
while being processed. It is therefore not recommended to store more than about athousand objectsin an ARRAY
in normal operations with disk-based databases. For specialised applications, use ARRAY with as many elements
as your memory allocation can support.

HyperSQL 2.5 has several compatibility modes which alow the type names that are used by other RDBMS to be
accepted and trangdlated into the closest SQL Standard type. For example, the type TEXT, supported by MySQL and
PostgreSQL is trandated in these compatibility modes.

Data Types and Operations

HyperSQL supportsall the types defined by SQL-92, plus BOOLEAN, BINARY and L OB typesthat were later added
to the SQL Standard. It also supports the non-standard OTHER type to store serializable Java objects.

SQL isastrongly typed language. All data stored in specific columns of tables and other objects (such as sequence
generators) have specific types. Each dataitem conformsto the type limits such as precision and scalefor the column. It
also conformsto any additional integrity constraintsthat are defined as CHECK constraintsin domainsor tables. Types
can be explicitly converted using the CAST expression, but in most expressions, they are converted automatically.

Data is returned to the user (or the application program) as a result of executing SQL statements such as query
expressions or function calls. All statements are compiled prior to execution and the return type of the datais known
after compilation and before execution. Therefore, once a statement is prepared, the data type of each column of the
returned result is known, including any precision or scale property. The type does not change when the same query
that returned one row, returns many rows as aresult of adding more data to the tables.

Some SQL functions used within SQL statements are polymorphic, but the exact type of the argument and the return
value is determined at compile time.

When a statement is prepared, using a JDBC PreparedStatement object, it is compiled by the engine and the type of
the columns of its ResultSet and / or its parameters are accessible through the methods of PreparedStatement.

Numeric Types

TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without adecimal point) are the supported
integral types. They correspond respectively to byt e, short,i nt, | ong, Bi gDeci mal and Bi gDeci mal Java
types in the range of values that they can represent (NUMERIC and DECIMAL are equivaent). Thetype TINYINT
isan HSQLDB extension to the SQL Standard, while the others conform to the Standard definition. The SQL type
dictates the maximum and minimum values that can be held in a field of each type. For example the value range for
TINYINT is-128 to +127. The bit precision of TINYINT, SMALLINT, INTEGER and BIGINT isrespectively 8, 16,
32 and 64. For NUMERIC and DECIMAL, decimal precision is used.

DECIMAL and NUMERIC with decimal fractions are mapped to j ava. mat h. Bi gDeci mal and can have very
large numbers of digits. In HyperSQL thetwo typesare equivalent. Thesetypes, together with integral types, arecalled
exact numeric types.

In HyperSQL, REAL, FLOAT, DOUBLE are equivalent and all mapped to doubl e in Java. These types are defined
by the SQL Standard as approximate numeric types. The bit-precision of all these typesis 64 bits.

The decimal precision and scale of NUMERIC and DECIMAL types can be optionally defined. For example,
DECIMAL(10,2) means maximum total number of digitsis 10 and there are always 2 digits after the decimal point,

12

HyperS@L SQL Language

while DECIMAL(10) means 10 digits without a decimal point. The bit-precision of FLOAT can be defined but it is
ignored and the default bit-precision of 64 is used. The default precision of NUMERIC and DECIMAL (when not
defined) is 100.

Note: If adatabase hasbeen set to ignoretype precision limitswith the SET DATABASE SQL SIZE FAL SE command,
then atype definition of DECIMAL with no precision and scale istreated as DECIMAL (100,10). In normal operation,
it istreated as DECIMAL (100).

Integral Types

In expressions, TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without a decimal point)
can be freely combined and no data narrowing takes place. The resulting valueis of atype that can support all possible
values.

If the SELECT statement refers to a simple column or function, then the return type is the type corresponding to the
column or the return type of the function. For example:

CREATE TABLE t(a | NTEGER b Bl G NT);
SELECT MAX(a), MAX(b) FROMt;

will return aResul t Set where the type of the first column isj ava. | ang. | nt eger and the second column is
j ava. |l ang. Long. However,

| SELECT MAX(a) + 1, MAX(b) + 1 FROMt; |

will returnj ava. | ang. Long and Bi gDeci mal values, generated asaresult of uniform type promotion for al the
return values. Note that type promotion to Bi gDeci mal ensures the correct value is returned if MAX(b) evaluates
to Long. MAX_VALUE.

Thereis no built-in limit on the size of intermediate integral values in expressions. As aresult, you should check for
thetype of the Resul t Set column and choose an appropriate get XXXX() method to retrieveit. Alternatively, you
can use the get Obj ect () method, then cast the result to j ava. | ang. Nunber and use the i nt Val ue() or
| ongVal ue() methods on the result.

When theresult of an expression is stored in acolumn of adatabasetable, it hasto fit in thetarget column, otherwise an
error isreturned. For example, when 1234567890123456789012 / 12345687901234567890 isevaluated,
the result can be stored in any integral type column, even a TINYINT column, asitisasmall value.

In SQL Statements, an integer literal is treated as INTEGER, unless its value does not fit. In this caseit is treated as
BIGINT or DECIMAL, depending on the value.

Depending on the types of the operands, the result of the operation is returned in a JDBC Resul t Set in any of
therelated Javatypes: | nt eger, Long or Bi gDeci nal . TheResul t Set . get XXXX() methods can be used to
retrieve the values so long as the returned val ue can be represented by the resulting type. Thistypeis deterministically
based on the query, not on the actual rows returned.

Other Numeric Types

In SQL statements, number literals with a decimal point are treated as DECIMAL unless they are written with an
exponent. Thus 0. 2 isconsidered a DECIMAL value but 0. 2EOQ is considered a DOUBLE value.

When an approximate numeric type, REAL, FLOAT or DOUBLE (all synonymous) is part of an expression involving
different numeric types, the type of the result is DOUBLE. DECIMAL values can be converted to DOUBLE unless
they are beyond the Doubl e. M N_VALUE - Doubl e. MAX_VALUE range. For example, A * B, A /B, A + B,
etc. will return aDOUBLE valueif either A or BisaDOUBLE.

Otherwise, when no DOUBLE valueexists, if aDECIMAL or NUMERIC vaueis part an expression, the type of the
result is DECIMAL or NUMERIC. Similar to integral values, when the result of an expression is assigned to atable

13

HyperS@L SQL Language

column, the value has to fit in the target column, otherwise an error is returned. This means a small, 4 digit value of
DECIMAL type can be assigned to a column of SMALLINT or INTEGER, but avalue with 15 digits cannot.

WhenaDECIMAL valueismultiplied by aDECIMAL or integral type, theresulting scaleisthe sum of the scalesof the
two terms. When they are divided, the result is avalue with a scale (number of digitsto the right of the decimal point)
equal to the larger of the scales of the two terms. The precision for both operations is calculated (usually increased)
to alow all possible results.

Thedistinction between DOUBLE and DECIMAL isimportant when adivision takes place. For example, 10. 0/ 8. 0
(DECIMAL) equals 1. 2 but 10. OEO/ 8. OEO (DOUBLE) equals 1. 25. Without division operations, DECIMAL
values represent exact arithmetic.

REAL, FLOAT and DOUBLE values are all stored in the database as j ava. | ang. Doubl e objects. Special
values such as NaN and +-Infinity are also stored and supported. These values can be submitted to the database
via JDBC Pr epar edSt at ement methods and are returned in Resul t Set objects. In order to alow division
by zero of DOUBLE values in SQL statements (which returns NaN or +-Infinity) you should set the property
hsgldb.double nan as false (SET DATABASE SQL DOUBLE NAN FALSE). The double values can be retrieved
from a Resul t Set in the required type so long as they can be represented. For setting the values, when
Pr epar edSt at enent . set Doubl e() orset Fl oat () isused, thevalueistreated asaDOUBLE automatically.

In short,
<nuneric type> ::= <exact nuneric type> | <approxinmate nuneric type>
<exact nuneric type> ::= NUMERIC [<left paren> <precision>|[<conma> <scal e>]

<right paren>] | { DECIMAL | DEC} [<left paren> <precision>[<comma> <scal e>]
<right paren>] | SMALLINT | INTEGER | INT | BIG NT

<approxi mate nuneric type> ::= FLOAT [<left paren> <precision> <right paren>]
| REAL | DOUBLE PRECI SI ON

<preci sion> ::= <unsigned integer>

<scal e> ::= <unsigned integer>

Boolean Type

The BOOLEAN type conforms to the SQL Standard and represents the values TRUE, FALSE and UNKNOWN. This
type of column can be initialised with Java boolean values, or with NULL for the UNKNOWN value.

Thethree-valuelogic is sometimes misunderstood. For example, x IN (1, 2, NULL) does not return trueif x isNULL.
In previous versions of HyperSQL, BIT was simply an aliasfor BOOLEAN. In version 2, BIT isasingle-bit bit map.
<bool ean type> ::= BOOLEAN

The SQL Standard does not support type conversion to BOOLEAN apart from character stringsthat consists of boolean
literals. Because the BOOLEAN typeisrelatively new to the Standard, several database products used other typesto
represent boolean values. For improved compatibility, HyperSQL allows some type conversions to boolean.

Values of BIT and BIT VARYING types with length 1 can be converted to BOOLEAN. If the bit is set, the result of
conversion isthe TRUE value, otherwiseit is FALSE.

Vauesof TINYINT, SMALLINT, INTEGER and BIGINT types can be converted to BOOLEAN. If the valueis zero,
the result isthe FAL SE value, otherwise it is TRUE.

Character String Types

14

HyperS@L SQL Language

The CHARACTER, CHARACTER VARYING and CLOB types are the SQL Standard character string types.
CHAR, VARCHAR and CHARACTER LARGE OBJECT are synonyms for these types. HyperSQL also supports
LONGVARCHAR as a synonym for VARCHAR. If LONGVARCHAR is used without a length, then a length of
16M is assigned. You can set LONGVARCHAR to map to CLOB, withthesql . | ongvar _i s_| ob connection
property or the SET DATABASE SQL LONGVAR ISLOB TRUE statement..

HyperSQL 's default character set is Unicode, therefore all possible character strings can be represented by these types.

The SQL Standard behaviour of the CHARACTER typeisaremnant of legacy systemsin which character strings are
padded with spaces to fill afixed width. These spaces are sometimes significant while in other cases they are silently
discarded. It would be best to avoid the CHARACTER type altogether. With the rest of the types, the strings are not
padded when assigned to columns or variables of the given type. The trailing spaces are still considered discardable
for al character types. Therefore, if a string with trailing spaces is too long to assign to a column or variable of a
given length, the spaces beyond the type length are discarded and the assignment succeeds (provided all the characters
beyond the type length are spaces).

The VARCHAR and CLOB types have length limits, but the strings are not padded by the system. Note that if you
use a large length for a VARCHAR or CLOB type, no extra space is used in the database. The space used for each
stored item is proportional to its actual length.

If CHARACTER is used without specifying the length, the length defaults to 1. For the CLOB type, the length limit
can be defined in units of kilobyte (K, 1024), megabyte (M, 1024 * 1024) or gigabyte (G, 1024 * 1024 * 1024), using
the<mul ti pl i er>. 1f CLOB isused without specifying the length, the length defaultsto 1GB.

<character string type> ::= { CHARACTER | CHAR } [<left paren> <character
[ength> <right paren>] | { CHARACTER VARYI NG | CHAR VARYING | VARCHAR } <left
paren> <character |ength> <right paren> | LONGVARCHAR [<l eft paren> <character
| engt h> <right paren>] | <character |arge object type>

<character large object type> ::= { CHARACTER LARCGE OBJECT | CHAR LARCGE OBJECT
| CLOB} [<left paren> <character |arge object |ength> <right paren>]
<character length> ::= <unsigned integer> [<char length units>]

<l arge object length>::=<length>[<nmultiplier>] | <large object | ength token>
<character |l arge object length>::= <large object | ength>[<char | ength units>]
<l arge object length token> ::= <digit> .. <multiplier>

<multiplier>::= K| M| G

<char length units> ::= CHARACTERS | OCTETS

Each character type has a collation. Thisis either a default collation or stated explicitly with the COLLATE clause.
Collations are discussed in the Schemas and Database Objects chapter.

CHAR(10)

CHARACTER(10)

VARCHAR(2)

CHAR VARYI N&(2)

CLOB(1000)

CLOB(30K)

CHARACTER LARGE OBJECT(1M
LONGVARCHAR

Binary String Types

15

HyperS@L SQL Language

The BINARY, BINARY VARYING and BLOB types are the SQL Standard binary string types. VARBINARY
and BINARY LARGE OBJECT are synonyms for BINARY VARYING and BLOB types. HyperSQL also supports
LONGVARBINARY asasynonym for VARBINARY. You can set LONGVARBINARY to map to BLOB, with the
sql . I ongvar _i s_| ob connection property or the SET DATABASE SQL LONGVAR ISLOB TRUE statement.

Binary string types are used in a similar way to character string types. There are severa built-in functions that are
overloaded to support character, binary and bit strings.

The BINARY type represents a fixed width-string. Each shorter string is padded with zeros to fill the fixed width.
Similar to the CHARACTER type, the trailing zerosin the BINARY string are simply discarded in some operations.
For the same reason, it is best to avoid this particular type and use VARBINARY instead.

When two binary values are compared, if oneisof BINARY type, then zero padding is performed to extend the length
of the shorter string to the longer one before comparison. No padding is performed with other binary types. If the bytes
compare equal to the end of the shorter value, then the longer string is considered larger than the shorter string.

If BINARY is used without specifying the length, the length defaults to 1. For the BLOB type, the length limit can
be defined in units of kilobyte (K, 1024), megabyte (M, 1024 * 1024) or gigabyte (G, 1024 * 1024 * 1024), using the
<mul ti plier>.If BLOB isused without specifying the length, the length defaults to 1GB.

The UUID type represents a UUID string. The type is similar to BINARY(16) but with the extra
enforcement that disallows assigning, casting or comparing with shorter or longer strings. Strings such as
'24ff1824-01e8-4dac-8eb3-3fee32ad2b9c’ or '24ff182401e84dac8eb33fee32ad2b9c’ are allowed. When avalue of the
UUID type is converted to a CHARACTER type, the hyphens are inserted in the required positions. Java UUID
objects can be used withj ava. sqgl . Pr epar edSt at ement to insert values of this type. The getObject() method
of ResultSet returns the Java object for UUID column data.

<binary string type>::=BINARY [<left paren> <l ength> <right paren>] | { Bl NARY
VARYI NG | VARBI NARY } <l eft paren> <l engt h> <ri ght paren>| LONGVARBI NARY [<l eft
paren> <l ength> <right paren>] | U D | <binary |arge object string type>

<binary large object string type> ::= { BINARY LARGE OBJECT | BLOB } [<left
paren> <l arge object |ength> <right paren>]

<l engt h> ::= <unsigned integer>

Bl NARY(10)

VARBI NARY(2)

Bl NARY VARY! N& 2)

BLOB(1000)

BLOB(30G)

Bl NARY LARGE OBJECT(1M
LONGVARBI NARY

Bit String Types

The BIT and BIT VARYING types are the supported bit string types. These types were defined by SQL:1999 but
were |later removed from the Standard. Bit types represent bit maps of given lengths. Each bitisO or 1. The BIT type
represents a fixed width-string. Each shorter string is padded with zeros to fill the fixed with. If BIT is used without
specifying the length, the length defaults to 1. The BIT VARYING type has a maximum width and shorter strings
are not padded.

Before the introduction of the BOOLEAN type to the SQL Standard, a single-bit string of the type BIT(1) was
commonly used. For compatibility with other productsthat do not conformto, or extend, the SQL Standard, HyperSQL
allows values of BIT and BIT VARYING types with length 1 to be converted to and from the BOOLEAN type.
BOOLEAN TRUE is considered equal to B'1', BOOLEAN FALSE is considered equal to B'0'.

16

HyperS@L SQL Language

For the same reason, numeric values can be assigned to columns and variables of the type BIT(1). For assignment, the
numeric value zero is converted to B'0', while all other values are converted to B'1'. For comparison, numeric values
lisconsidered equal to B'1' and numeric value zero is considered equal to B'0'.

It is not allowed to perform other arithmetic or boolean operationsinvolving BIT(1) and BIT VARYING(1). The kid
of operations allowed on hit strings are analogous to those allowed on BINARY and CHARACTER strings. Several
built-in functions support all three types of string.

<bit string type> ::= BIT [<left paren> <length> <right paren>] | BI T VARYI NG
<l eft paren> <l ength> <right paren>

BIT

BI T(10)

BI T VARYI NG 2)

Lob Data

BLOB and CLOB arelob types. These types are used for very long strings that do not necessarily fit in memory. Small
lobs that fit in memory can be accessed just like BINARY or VARCHAR column data. But lobs are usually much
larger and therefore accessed with special JDBC methods.

Toinsert alobinto atable, or to update a column of lob type with anew lob, you can usetheset Bi nar ySt r eamn()
and set Char act er St r eanm() methodsof JDBCj ava. sql . Prepar edSt at enent . These are very efficient
methodsfor long lobs. Other methods are al so supported. If thedatafor the BLOB or CL OB isalready amemory object,
you can use the set Byt es() or set Stri ng() methods, which are efficient for memory data. Another method
isto obtain alob with the get Bl ob() and get C ob() methodsof j ava. sgl . Connect i on, populateits data,
thenusetheset Bl ob() orset d ob() methodsof Pr epar edSt at enment . Y et another method allowsto create
instances of or g. hsql db. j dbc. JDBCBI obFi | e and or g. hsql db. j dbc. JDBCCl obFi | e and construct a
largelob for use with set Bl ob() andset C ob() methods.

A lob isretrieved from a ResultSet with the get Bl ob() or get C ob() method. The steaming methods of the lob
objects are then used to access the data. HyperSQL also allows efficient access to chunks of lobswith get Byt es()
or get String() methods. Furthermore, parts of a BLOB or CLOB already stored in a table can be modified.
An updatable Resul t Set is used to select the row from the table. The get Bl ob() or get C ob() methods of
Resul t Set are used to accessthe lob asaj ava. sql . Bl ob or j ava. sql . Cl ob object. The set Byt es()
and set St ri ng() methods of these objects can be used to modify the lob. Finally the updat eRow() method of
the Resul t Set isused to update the lob in the row. Note these modifications are not allowed with compressed or
encrypted lobs.

Lobs are logically stored in columns of tables. Their physical storage is a separate *.lobs file. Thisfileis created as
soon asaBLOB or CLOB isinserted into the database. The file will grow as new lobs are inserted into the database.
Inversion 2, the *.lobs fileis never deleted even if al lobs are deleted from the database. In this case you can delete
the *.lobs file after a SHUTDOWN. When a CHECKPOINT happens, the space used for deleted lobs is freed and
is reused for future lobs. By default, clobs are stored without compression. Y ou can use a database setting to enable
compression of clobs. This can significantly reduce the storage size of clobs.

Storage and Handling of Java Objects

From version 2.3.4 there are two options for storing Java Objects.

The default option allows storing Serializable object. The objects remain serialized inside the database until they are
retrieved. The application program that retrieves the object must include in its classpath the Java Class for the object,
otherwise it cannot retrieve the object.

Any seridizable Java Object can be inserted directly into a column of type OTHER using any variation of
Pr epar edSt at enent . set Obj ect () methods.

17

HyperS@L SQL Language

The aternative Live Object option is for mem: databases only and is enabled when the database property
sgl.live object=true is appended to the connection property that creates the mem database. For example
"jdbc: hsqgl db: mem nydb; sql . | i ve_obj ect =t r ue' . With this option, any Java object can be stored asit
isnot serialized. The SQL statement SET DATABASE SQL LI VE OBJECT TRUE can be also used. Note the SQL
statement must be executed on the first connection to the database before any datais inserted. No data access should
be made from this connection. Instead, new connections should be used for data access.

For comparison purposes and in indexes, any two Java Objects are considered equal unless one of themisNULL. You
cannot search for a specific object or perform ajoin on a column of type OTHER.

Java Objects can simply be stored internally and no operations can be performed on them other than assignment
between columns of type OTHER or checking for NULL. Tests such as WHERE obj ect1 = object2 donot
mean what you might expect, as any non-null object would satisfy such atests. But WHERE obj ect1l 1S NOT
NULL is perfectly acceptable.

The engine does not alow normal column values to be assigned to Java Object columns (for example, assigning an
INTEGER or STRING to such a column with an SQL statement such as UPDATE nyt abl e SET obj ect col
= intcol WHERE ...).

<j ava object type> ::= OTHER

The default method of storage is used when the objects and their state needs to be saved and retrieved in the future.
This method is also used when memory resources are limited and collections of objects are stored and retrieved only
when needed.

The Live Object option uses the database table as a collection of objects. This allows storing some attributes of the
objects in the same table alongside the object itself and fast search and retrieval of objects on their attributes. For
example when many thousands of live objects contain details of films, The film title and the director can be stored in
the table and searches can be performed for films on these attributes:

CREATE TABLE novies (director VARCHAR(30), title VARCHAR(40), obj OTHER)
SELECT obj FROM novi es WHERE director LIKE 'Luc%

In any case, at least one attribute of the object should be stored to alow efficient retrieval of the objects from both
Live Object and Serialized storage. Often an id number is used a the attribute.

Type Length, Precision and Scale

In older version of HyperSQL, al table column type definitions with a column length, precision or scale qualifier
were accepted and ignored. HSQL DB 1.8 enforced correctness but included an option to enforce the length, precision
or scale.

In HyperSQL 2, length, precision and scale qualifiers are always enforced. For backward compatibility, when older
databases which had the property hsql db. enforce_stri ct _si ze=f al se are converted to version 2, this
property is retained. However, this is a temporary measure. Y ou should test your application to ensure the length,
precision and scale that is used for column definitions is appropriate for the application data. You can test with the
default database setting, which enforces the sizes.

String types, including al BIT, BINARY and CHAR string types plus CLOB and BLOB, are generally defined with
alength. If no length is specified for BIT, BINARY and CHAR, the default length is 1. For CLOB and BLOB an
implementation defined length of 1M is used.

TIME and TIMESTAMP types can be defined with afractional second precision between 0 and 9. INTERVAL type
definition may have precision and, in some cases, fraction second precision. DECIMAL and NUMERIC types may be
defined with precision and scale. For al of these types a default precision or scale valueisused if oneis not specified.
The default scaleis 0. The default fractional precision for TIME is 0, whileitis 6 for TIMESTAMP.

18

HyperS@L SQL Language

Vaues can be converted from one type to another in two different ways: by using explicit CAST expression or by
implicit conversion used in assignment, comparison and aggregation.

String values cannot be assigned to VARCHAR columns if they are longer than the defined type length. For
CHARACTER columns, along string can be assigned (with truncation) only if all the characters after the length are
spaces. Shorter strings are padded with the space character when inserted into a CHARACTER column. Similar rules
are applied to VARBINARY and BINARY columns. For BINARY columns, the padding and truncation rules are
applied with zero bytes, instead of spaces.

Explicit CAST of avaluetoaCHARACTER or VARCHAR type will result in forced truncation or padding. So atest
suchasCAST (mycol AS VARCHAR(2)) = 'xy' will find the values beginning with 'xy'. Thisisthe equivalent
of SUBSTRI NG nycol FROM 1 FOR 2)= 'xy'.

For al numeric types, the rules of explicit cast and implicit conversion are the same. If cast or conversion causes any
digitsto belost from the fractional part, it can take place. If the non-fractional part of the value cannot be represented
in the new type, cast or conversion cannot take place and will result in a data exception.

There are special rulesfor DATE, TIME, TIMESTAMP and INTERVAL casts and conversions.

Datetime types

HSQLDB fully supports datetime and interval types and operations, including all relevant optional features, as
specified by the SQL Standard since SQL-92. The two groups of types are complementary.

The DATE type represents a calendar date with YEAR, MONTH and DAY fields.

The TIME type represents time of day with HOUR, MINUTE and SECOND fields, plus an optional SECOND
FRACTION field.

The TIMESTAMP type represents the combination of DATE and TIME types.

TIME and TIMESTAMP types can include WITH TIME ZONE or WITHOUT TIME ZONE (the default) qualifiers.
They can have fractional second parts. For example, TIME(6) has six fractional digits for the second field.

If fractional second precision is not specified, it defaultsto O for TIME and to 6 for TIMESTAMP.

<datetine type> ::= DATE | TIME [<left paren> <tinme precision> <right paren>]
[<with or without tinme zone>] | TIMESTAMP [<l eft paren> <tinestanp precision>
<right paren>] [<with or without time zone>]

<with or without tine zone> ::= WTH TIME ZONE | W THOUT TI ME ZONE
<tinme precision> ::= <time fractional seconds precision>
<tinmestanp precision> ::= <time fractional seconds precision>
<time fractional seconds precision> ::= <unsigned integer>

DATE

TI VE(6)

TI MESTAMP(2) W TH TI ME ZONE

TIME or TIMESTAMP litera s containing a zone displacement value are WITH TIME ZONE. Examples of the string
literals used to represent date time values, some with time zone, some without, are below:

DATE ' 2008- 08- 22"
TI MESTAWP ' 2008- 08- 08 20: 08: 08’

19

HyperS@L SQL Language

TI MESTAMP ' 2008- 08- 08 20: 08: 08+8: 00" /* Beijing */
TI ME ' 20: 08: 08. 034900'
TI ME ' 20: 08: 08. 034900-8: 00" /* US Pacific */

TimeZone

DATE values do not take time zones. For example, United Nations designates 5 June as World Environment Day,
which was observed on DATE '2008-06-05' in different time zones.

TIME and TIMESTAMP values without time zone, usually have a context that indicates some local time zone. For
example, a database for college course timetables usually stores class dates and times without time zones. This works
because the location of the collegeisfixed and the time zone displacement isthe samefor all the values. Even when the
events take place in different time zones, for example international flight times, it is possible to store al the datetime
information as references to a single time zone, usually GMT. For some databases it may be useful to store the time
zone displacement together with each datetime value. SQL’s TIME WITH TIME ZONE and TIMESTAMP WITH
TIME ZONE values include a time zone displacement value.

The time zone displacement is of the type INTERVAL HOUR TO MINUTE. This data type is described in the next
section. The legal values are between '-18:00' and '+18:00'.

Operations on Datetime Types

Theexpression<dat et i me expressi on> AT Tl ME ZONE <t i ne di spl acenment > evaluatesto adatetime
value representing exactly the same point of time in the specified <t i me di spl acenment >. The expression, AT
LOCAL isequivalentto AT TI ME ZONE <l ocal tine displacenent>. If AT TI ME ZONE is used with
a datetime operand of type WITHOUT TIME ZONE, the operand is first converted to a value of type WITH TIME
ZONE at the session’ stime displacement, then the specified time zone displacement is set for the value. Therefore, in
these cases, the final value depends on the time zone of the session in which the statement was used.

AT TIME ZONE, modifies the field values of the datetime operand. Thisis done by the following procedure:
1. determine the corresponding datetime at UTC.
2. find the datetime value at the given time zone that corresponds with the UTC value from step 1.

Example a

‘ TIME '12: 00: 00' AT TIME ZONE | NTERVAL ' 1: 00' HOUR TO M NUTE ‘

If the session’ stime zone displacement is-'8:00', thenin step 1, TIME '12:00:00' is converted to UTC, whichisTIME
'20:00:00+0:00'. In step 2, thisvalue is expressed as TIME '21:00:00+1:00'.

Example b:

‘ TIME ' 12: 00: 00-5: 00" AT TI ME ZONE | NTERVAL ' 1: 00" HOUR TO M NUTE ‘

Because the operand has a time zone, the result is independent of the session time zone displacement. Step 1 results
in TIME '17:00:00+0:00', and step 2 resultsin TIME '18:00:00+1:00'

Note that the operand is not limited to datetime literals used in these examples. Any valid expression that evaluates
to a datetime value can be the operand.

Type Conversion

CAST isused for all other conversions. Examples:

CAST (<val ue> AS TI ME W THOUT TI ME ZONE)
CAST (<val ue> AS TIME W TH TI ME ZONE)

20

HyperS@L SQL Language

Inthefirst example, if <val ue> hasatime zone component, itissimply dropped. For example, TIME '12:00:00-5:00'
is converted to TIME '12:00:00

In the second example, if <val ue> has no time zone component, the current time zone displacement of the sessionis
added. For example, TIME '12:00:00' is converted to TIME '12:00:00-8:00" when the session time zone displacement
is'-8:00'

Conversion between DATE and TIMESTAMP is performed by removing the TIME component of a TIMESTAMP
value or by setting the hour, minute and second fields to zero. TIMESTAMP '2008-08-08 20:08:08+8:00" becomes
DATE '2008-08-08', while DATE '2008-08-22' becomes TIMESTAMP '2008-08-22 00:00:00'.

Conversion between TIME and TIMESTAMP is performed by removing the DATE field values of a TIMESTAMP
value or by appending the fields of the TIME value to the fields of the current session date value.

Assignment

When avalueis assigned to adatetime target, e.g., avalueis used to update arow of atable, the type of the value must
be the same as the target, but the WITH TIME ZONE or WITHOUT TIME ZONE characteristics can be different. If
the types are not the same, an explicit CAST must be used to convert the value into the target type.

Comparison

When values WITH TIME ZONE are compared, they are converted to UTC values before comparison. If a value
WITH TIME ZONE iscompared to another WITHOUT TIME ZONE, thenthe WITH TIME ZONE vaueisconverted
to AT LOCAL, then converted to WITHOUT TIME ZONE before comparison.

It is not recommended to design applications that rely on comparisons and conversions between TIME values WITH
TIME ZONE. The conversions may involve normalisation of the time value, resulting in unexpected results. For
exampl e, theexpression: BETWEEN(TIME '12:00:00-8:00'", TIME '22:00:00-8:00") isconverted to BETWEEN(TIME
'20:00:00+0:00', TIME '06:00:00+0:00") when it is evaluated in the UTC zone, which is always FALSE.

Functions

Several functions return the current session timestamp in different datetime types:

CURRENT_DATE DATE

CURRENT_TIME TIMEWITH TIME ZONE
CURRENT_TIMESTAMP TIMESTAMPWITH TIME ZONE
LOCALTIME TIMEWITHOUT TIME ZONE
LOCALTIMESTAMP TIMESTAMP WITHOUT TIME ZONE

HyperSQL supports a very extensive range of functions for conversion, extraction and manipulation of DATE and
TIMESTAMP values. See the Built In Functions chapter.

Session Time Zone Displacement

When an SQL sessionisstarted (withaJDBC connection) thelocal timezone of the client VM (including any seasonal
time adjustments such as daylight saving time) is used as the session time zone displacement. Note that the SQL session
time displacement is not changed when a seasona time adjustment takes place while the session is open. To change
the SQL session time zone displacement, use the following commands:

SET TIME ZONE <tine di spl acenent >

SET TI ME ZONE LOCAL

21

HyperS@L SQL Language

Thefirst command sets the displacement to the given value. The second command restoresthe original, real time zone
displacement of the session.

Datetime Values and Java

When datetime values are sent to the database using the Pr epar edSt at enent or Cal | abl eSt at enent
interfaces, the Java object is converted to the type of the prepared or callable statement parameter. This type may
be DATE, TIME, or TIMESTAMP (with or without time zone). The time zone displacement is the time zone of the
JDBC session.

When datetime values are retrieved from the database using the Resul t Set interface, there are two representations.
Theget Stri ng(..) methods of the Resul t Set interface, return an exact representation of the value in the SQL
type as it is stored in the database. This includes the correct number of digits for the fractional second field, and
for values with time zone displacement, the time zone displacement. Therefore, if TIME '12:00:00' is stored in the
database, al usersin different timezoneswill get '12:00:00" when they retrievethevalueasastring. Theget Ti me(..)
and get Ti nest anp(..) methods of theResul t Set interface return Java objectsthat are corrected for the session
time zone. The UTC millisecond value contained the j ava. sql . Ti me or j ava. sql . Ti mest anp objects will
be adjusted to the time zone of the session, thereforethet oSt ri ng() method of these objects return the same values
in different time zones.

If you want to store and retrieve UTC values that are independent of any session's time zone, you can use a
TIMESTAMP WITH TIME ZONE column. The set Ti me(...) and set Ti mest anp(...) methods of the
PreparedStatement interface which have a Calendar parameter can be used to assign the values. The time zone of the
given Calendar argument is used as the time zone. Conversely, theget Ti me(...) and get Ti mest anp(. . .)
methods of the ResultSet interface which have a Calendar parameter can be used with a Calendar argument to retrieve
the values.

JDBC 4 and JAVAG6 has an unfortunate limitation and does not include type codes for SQL datetime types that have
a TIME ZONE property. Therefore, for compatibility with database tools that are limited to the JDBC type codes,
HyperSQL reports these types by default as datetime types without TIME ZONE.

Java 8 Extensions

JAVA 8 introduced new type codes for TIMESTAMP WITH TIME ZONE and TIME WITH TIME ZONE.
HSQLDB 2.4.0 and later when compiled with JDK8 supports this in Resul t Set, Pr epar edSt at enent and
Cal | abl eSt at enent .

e Theget bj ect (i nt col umml ndex) method on a column of TIMESTAMP WITH TIME ZONE returns an
java.tinme. O fsetDat eTi ne object.

The get Obj ect (i nt col umml ndex) method on a column of TIME WITH TIME ZONE returns an
java.time. O f set Ti me object.

» The get Gbj ect(int colummlndex, dCass type) method on any date, time and timestamp
supports the j ava. ti me package types. Local Dat e, Local Ti ne, Local Dat eTi me, O f set Ti ne and
O f set Dat eTi ne aswell asj ava. sql packagetypes, Dat e, Ti ne and Ti nest anp.

Theset Obj ect methods also support Java objects of the types listed above.

Theget Obj ect andset Obj ect methodswith column name parameters behave just like their counterpartswith
columnlndexe parameters.

Non-Standard Extensions

HyperSQL version 2.5 supports some extensions to the SQL standard treatment of datetime and interval types. For
example, the Standard expression to add a number of days to a date has an explicit INTERVAL value but HSQLDB

22

HyperS@L SQL Language

also alows an integer to be used without specifying DAY . Examples of some Standard expressions and their non-
standard alternatives are given below:

-- standard forns
CURRENT_DATE + '2' DAY
SELECT (LOCALTI MESTAMP - ati mest anpcol utm) DAY TO SECOND FROM at abl e

-- non-standard forns
CURRENT_DATE + 2
SELECT LOCALTI MESTAMP - ati mest anpcol unm FROM at abl e

It is recommended to use the SQL Standard syntax asit is more precise and avoids ambiguity.

Interval Types

Interval types are used to represent differences between date time values. The difference between two date time values
can be measured in seconds or in months. For measurements in months, the units YEAR and MONTH are available,
while for measurements in seconds, the units DAY, HOUR, MINUTE, SECOND are available. The units can be used
individually, or asarange. Aninterval type can specify the precision of the most significant field and the second fraction
digits of the SECOND field (if it has a SECOND field). The default precision is 2. The default second precisionis 0.

<interval type> ::= INTERVAL <interval qualifier>
<interval qualifier> ::= <start field> TO<end field>| <single datetine field>
<start field> ::= <non-second primary datetinme field> [<left paren> <interval

| eading field precision> <right paren>]

<end field> ::= <non-second prinmary datetinme field> | SECOND [<left paren>
<interval fractional seconds precision> <right paren>]

<single datetine field> ::= <non-second prinmary datetine field> [<left paren>
<interval leading field precision> <right paren>] | SECOND [<left paren>
<interval leading field precision> [<coma> <interval fractional seconds
precision>] <right paren>]

<primary datetine field> ::= <non-second prinmary datetine field> | SECOND
<non-second prinary datetinme field> ::= YEAR | MONTH | DAY | HOUR | M NUTE
<interval fractional seconds precision> ::= <unsigned integer>

<interval leading field precision> ::= <unsigned integer>

Examples of INTERVAL type definition:

| NTERVAL YEAR TO MONTH

| NTERVAL YEAR(3)

| NTERVAL DAY(4) TO HOUR

| NTERVAL M NUTE(4) TO SECOND(6)
| NTERVAL SECOND(4, 6)

The word INTERVAL indicates the general type name. The rest of the definition is called an <i nt erval
qgual i fi er>. Thisdesignation is important, asin most expressions <i nt erval qual i fi er > isused without
theword INTERVAL.

Interval Values

23

HyperS@L SQL Language

An interval value can be negative, positive or zero. An interval type has all the datetime fields in the specified range.
Thesefields are similar to those in the TIMESTAMP type. The differences are as follows:

The first field of an interval value can hold any numeric value up to the specified precision. For example, the hour
fieldin HOUR(2) TO SECOND can hold values above 23 (up to 99). The year and month fields can hold zero (unlike
aTIMESTAMP value) and the maximum value of amonth field that is not the most significant field, is 11.

The standard function ABS(<i nt er val val ue expressi on>) canbeusedto convert anegativeinterval value
to a positive one.

Theliteral representation of interval values consists of the type definition, with a string representing the interval value
inserted after the word INTERVAL. Some examples of interval literal below:

I NTERVAL ' 145 23:12:19. 345" DAY(3) TO SECONX 3)

I NTERVAL ' 3503: 12: 19. 345" HOUR TO SECOND(3) /* equal to the first value */

I NTERVAL ' 19. 345" SECOND(4, 3) /* maxi mum nunber of digits for the second value is 4, and each
val ue is expressed with three fraction digits. */

I NTERVAL ' -23-10" YEAR(2) TO MONTH

Interval values of the types that are based on seconds can be cast into one another. Similarly, those that are based on
months can be cast into one another. It is not possible to cast or convert a value based on seconds to one based on
months, or vice versa.

When a cast is performed to a type with a smaller least-significant field, nothing is lost from the interval value.
Otherwise, the values for the missing least-significant fields are discarded. Examples:

CAST (I NTERVAL ' 145 23:12:19" DAY TO SECOND AS | NTERVAL DAY TO HOUR) = I NTERVAL ' 145 23' DAY
TO HOUR
CAST(| NTERVAL ' 145 23" DAY TO HOUR AS | NTERVAL DAY TO SECOND) = | NTERVAL ' 145 23:00: 00' DAY TO
SECOND

A numeric value can be cast to an interval type. In this case the numeric value is first converted to a single-field
INTERVAL typewiththe samefield astheleast significant field of thetarget interval type. Thisvalueisthen converted
to the target interval type For example CAST(22 ASINTERVAL YEAR TO MONTH) evauatesto INTERVAL '22'
MONTH and then INTERVAL '1 10' YEAR TO MONTH. Note that SQL Standard only supports caststo single-field
INTERVAL types, while HyperSQL allows casting to multi-field types as well.

An interval value can be cast to a numeric type. In this case the interval value is first converted to a single-field
INTERVAL type with the same field as the least significant filed of the interval value. The value is then converted
to the target type. For example, CAST (INTERVAL '1-11' YEAR TO MONTH AS INT) evaluatesto INTERVAL
'23' MONTH, and then 23.

Aninterval value can be cast into a character type, which resultsin an INTERVAL literal. A character value can be
cast into an INTERVAL type so long asit isastring with aformat compatible with an INTERVAL literal.

Two interval values can be added or subtracted so long as the types of both are based on the samefield, i.e., both are
based on MONTH or SECOND. The values are both converted to a single-field interval type with same field as the
least-significant field between the two types. After addition or subtraction, the result is converted to an interval type
that contains all the fields of the two original types.

An interval value can be multiplied or divided by a numeric value. Again, the value is converted to a numeric, which
isthen multiplied or divided, before converting back to the original interval type.

Aninterval value is negated by simply prefixing with the minus sign.

Interval values used in expressions are either typed values, including interval literals, or are interval casts. The
expression; <expr essi on> <interval qualifier>isacastof theresult of the <expr essi on> into the

24

HyperS@L SQL Language

INTERVAL typespecifiedby the<i nt erval qualifier>. The cast can be forned by addi ng t he
keywords and parent heses as follows: CAST (<expression> AS | NTERVAL <interval
qualifier>).

The exanples below feature different fornms of expression that represent an
interval value, which is then added to the given date literal.

I NTERVAL ' 1-10' YEAR TO MONTH /* interval literal */
"1-10' YEAR TO MONTH /* the string '1-10" is cast into | NTERVAL YEAR TO

DATE ' 2000- 01- 01'
DATE ' 2000- 01- 01'
MONTH */

DATE ' 2000-01-01' + 22 MONTH /* the integer 22 is cast into |INTERVAL MONTH, sane val ue as above
*/

DATE ' 2000-01-01' - 22 DAY /* the integer 22 is cast into | NTERVAL DAY */

DATE ' 2000-01-01' + COL2 /* the type of COL2 nust be an | NTERVAL type */

DATE ' 2000-01-01' + COL2 MONTH /* COL2 nmy be a nunber, it is cast into a MONTH i nterval */

+ +

Datetime and I nterval Operations

An interval can be added to or subtracted from a datetime value so long as they have some fields in common. For
example, an INTERVAL MONTH cannot be added to aTIME value, whilean INTERVAL HOUR TO SECOND can.
The interval is first converted to a numeric value, then the value is added to, or subtracted from, the corresponding
field of the datetime value.

If the result of addition or subtraction is beyond the permissible range for the field, the field value is normalised and
carried over to the next significant field until all the fields are normalised. For example, adding 20 minutesto TIME
'23:50:10" will result successively in '23:70:10', '24:10:10' and finally TIME '00:10:10'". Subtracting 20 minutes from
theresult is performed asfollows: '00:-10:10', -1:50:10', finally TIME '23:50:10'. Notethat if DATE or TIMESTAMP
normalisation resultsin the YEAR field value out of the range (1,10000), then an exception condition is raised.

If an interval value based on MONTH is added to, or subtracted from aDATE or TIMESTAMP value, the result may
have an invalid day (30 or 31) for the given result month. In this case an exception condition is raised.

The result of subtraction of two datetime expressions is an interval value. The two datetime expressions must be of
the same type. The type of the interval value must be specified in the expression, using only the interval field names.
The two datetime expressions are enclosed in parentheses, followed by the <i nt erval qualifi er> fieds. In
the first example below, COL1 and COL 2 are of the same datetime type, and the result is evaluated in INTERVAL
YEAR TO MONTH type.

(COL1 — COL2) YEAR TO MONTH /* the difference between two DATE or two TlI EMSTAMP val ues in years
and nonths */

(CURRENT_DATE — COL3) DAY /* the nunber of days between the value of COL3 and the current date
*/

(CURRENT_DATE - DATE ' 2000-01-01') YEAR TO MONTH /* the nunber of years and nonths since the
begi nning of this century */

CURRENT_DATE - 2 DAY /* the date of the day before yesterday */

(CURRENT_TI MESTAMP - TI MESTAMP ' 2009- 01- 01 00: 00: 00') DAY(4) TO SECOND(2) /* days to seconds
since the given date */

The individua fields of both datetime and interval values can be extracted using the EXTRACT function. The same
function can also be used to extract the time zone displacement fields of a datetime value.

EXTRACT ({YEAR | MONTH | DAY | HOUR | MNUTE | SECOND | TIMEZONE _HOUR |
TI MEZONE_M NUTE | DAY_OF_WEEK | VEEK_COF_YEAR } FROM{<dat eti ne val ue> | <interval
val ue>})

The dichotomy between interval types based on seconds, and those based on months, stems from the fact that the
different calendar months have different numbers of days. For example, the expression, “nine months and nine days
since an event” is not exact when the date of the event is unknown. It can represent a period of around 284 days give
or take one. SQL interval values are independent of any start or end dates or times. However, when they are added to

25

HyperS@L SQL Language

or subtracted from certain date or timestamp values, the result may be invalid and cause an exception (e.g. adding one
month to January 30 results in February 30, which isinvalid).

JDBC has an unfortunate limitation and does not include type codes for SQL INTERVAL types. Therefore, for
compatibility with database tools that are limited to the JDBC type codes, HyperSQL reports these types by default as
VARCHAR. You can use the URL property hsql db. transl ate_dti _types=fal se to override the default
behaviour.

Java 8 Extensions

JAVA 8 does not have a type codes for INTERVAL types. HSQLDB 2.4.0 and later, when compiled with
JDKS8 or later, supports j ava. ti ne types for INTERVAL typesin Resul t Set, Prepar edSt at enent and
Cal | abl eSt at enent .

e The get Object(int col uml ndex, d ass type) method on an INTERVAL supports
java.tine. Peri odtypefor YEARand MONTH interval andj ava. ti me. Dur at i on typefor other interval
typesthat cover DAY to SECOND.

» Theset Obj ect (i nt col umml ndex) methodacceptsj ava. ti ne. Peri odandj ava. ti ne. Duration
objects for columns of relevant INTERVAL types.

» Theget Obj ect andset Obj ect methodswith column name parameters behave just like their counterparts with
columnlndexe parameters.

Arrays

Array are a powerful feature of SQL:2016 and can help solve many common problems. Arrays should not be used
as a substitute for tables.

HyperSQL supports arrays of values according to the SQL:2008 Standard.

Elements of the array are either NULL, or of the same datatype. It is possible to define arrays of all supported types,
including the types covered in this chapter and user-defined types, except L OB types. An SQL array isonedimensional
and is addressed from position 1. An empty array can also be used, which has no element.

Arrays can be stored in the database, as well as being used as temporary containers of values for simplifying SQL
statements. They facilitate data exchange between the SQL engine and the user's application.

The full range of supported syntax allows array to be created, used in SELECT or other statements, combined with
rows of tables and used in routine calls.

Array Definition

Thetype of atable column, aroutine parameter, avariable, or the return value of afunction can be defined asan array.

<array type> ::= <data type> ARRAY [<left bracket or trigraph> <maxinmm
cardinality> <right bracket or trigraph>]

The word ARRAY is added to any valid type definition except BLOB and CLOB type definitions. If the optional
<maxi mum car di nal i t y>isnot used, the default valueis 1024. The size of the array cannot be extended beyond
maximum cardinality.

In the example below, the table contains a column of integer arrays and a column of varchar arrays. The VARCHAR
array hasan explicit maximum size of 10, which means each array can have between 0 and 10 elements. The INTEGER
array has the default maximum size of 1024. The scores column has adefault clause with an empty array. The default

26

HyperS@L SQL Language

clause can be defined only as DEFAULT NULL or DEFAULT ARRAY[] and does not allow arrays containing
elements.

CREATE TABLE t (id INT PRI MARY KEY, scores |NT ARRAY DEFAULT ARRAY[], names VARCHAR(20)
ARRAY[10])

An array can be constructed from value expressions or a query expression.

<array val ue constructor by enuneration> ::= ARRAY <left bracket or trigraph>
<array elenment |ist> <right bracket or trigraph>

<array el ement |ist>::= <val ue expression>[{ <conma> <val ue expression>}...]

<array value constructor by query> ::= ARRAY <left paren> <query expression>
[<order by clause>] <right paren>

In the examples below, arrays are constructed from values, column references or variables, function calls, or query
expressions.

ARRAY [1, 2, 3]

ARRAY ['HOT', 'COLD]

ARRAY [varl, var2, CURRENT_DATE]

ARRAY (SELECT | ast nane FROM nanest abl e ORDER BY i d)

Inserting and updating atablewithan ARRAY column can use array constructors, not only for updated column values,
but also in equality search conditions:

INSERT INTOt VALUES 10, ARRAY[1,2,3], ARRAY[' HOT', 'COLD]
UPDATE t SET names = ARRAY[' LARGE', 'SMALL'] WHERE id = 12
UPDATE t SET names = ARRAY[' LARGE', 'SMALL'] WHERE id < 12 AND scores = ARRAY[3, 4]

When using a PreparedStatement with an ARRAY parameter, an object of the type java.sql.Array must be used to set
the parameter. The or g. hsql db. j dbc. JDBCAr r ayBasi ¢ class can be used for constructing a java.sgl.Array
object in the user's application. Code fragment below:

String sql = "UPDATE t SET names = ? WHERE id = ?";
Prepar edSt at enent ps = connecti on. prepar eSt at enent (sql)
Obj ect[] data = new Object[]{"one", "two"};

/1 default types defined in org. hsqgl db.types. Type can be used

org. hsqgl db. types. Type type = org. hsqgl db. t ypes. Type. SQL_VARCHAR DEFAULT;
JDBCArrayBasi ¢ array = new JDBCArrayBasi c(data, type);

ps.setArray(1l, array);

ps.setlnt (2, 1000);

ps. execut eUpdat e() ;

Trigraph

A trigraph is a substitute for <left bracket> and <right bracket>.
<l eft bracket trigraph> ::= ?27?(

<right bracket trigraph> ::= ??)

The example below shows the use of trigraphs instead of brackets.

INSERT INTO t VALUES 10, ARRAY??(1,2,3??), ARRAY['HOT', 'COLD]
UPDATE t SET names = ARRAY ??(' LARGE', 'SMALL'??) WHERE id = 12

27

HyperS@L

SQL Language

‘ UPDATE t SET nanes = ARRAY['LARGE', 'SMALL'] WHERE id < 12 AND scores = ARRAY[3, 4]

Array Reference

The most common operations on an array are element reference and assignment, which are used when reading or
writing an element of the array. Unlike Java and many other languages, arrays are extended if an element is assigned
to an index beyond the current length. This can result in gaps containing NULL elements. Array length cannot exceed

the maximum cardinality.

Elements of al arrays, including those that are the result of function calls or other operations can be referenced for

reading.

<array element reference> ::= <array val ue expressi on> <l eft bracket> <nuneric

val ue expressi on>

<right bracket>

Elements of arrays that are table columns or routine variables can be referenced for writing. Thisis donein a SET
statement, either inside an UPDATE statement, or as a separate statement in the case of routine variables, OUT and

INOUT parameters.

<target array elenment specification> ::= <target array reference> <l eft bracket

or trigraph> <sinple value specification> <right

bracket or trigraph>

<target array reference> ::= <SQ paraneter reference> | <columm reference>

Note that only simple values or variables are allowed for the array index when an assignment is performed. The
examples below demonstrates how elements of the array are referenced in SELECT and an UPDATE statement.

SELECT scores[ranking], nanes[ranking] FROMt JON t1 on (t.id = t1.tid)
UPDATE t SET scores[2] = 123, nanes[2] = 'Reds' WHERE id = 10
SELECT scores[ranking], names[ranking] FROMt JONt1 on (t.id = t1.tid)

UPDATE t SET scores[2] = 123, nanes[2] = 'Reds' WHERE id = 10

Array Operations

Several SQL operations and functions can be used with arrays.

CONCATENATION

Array concatenation is performed similar to string concatenation. All elements of the array on the right are appended

to the array on left.

<array concatenation> ::= <array value expression 1> <concatenation operator>
<array val ue expression 2>

<concatenation operator> ::= ||

FUNCTIONS

Seven functions operate on arrays. Details are described in the Built In Functions chapter.

ARRAY_AGG is an aggregate function and produces an array containing values from different rows of a SELECT
statement. Details are described in the Data Access and Change chapter.

SEQUENCE_ARRAY creates an array with sequential elements.

CARDI NALI TY <l eft

paren> <array val ue expression> <right paren>

28

HyperS@L SQL Language

MAX_CARDI NALI TY <l eft paren> <array val ue expression> <right paren>

Array cardinality and max cardinality are functionsthat return an integer. CARDINALITY returns the element count,
while MAX_CARDINALITY returns the maximum declared cardinality of an array.

POSI TI ON_ARRAY <l eft paren> <val ue expression> | N <array val ue expressi on> [FROM
<nuneric val ue expression>] <right paren>

The POSITION_ARRAY function returns the position of the first match for the <value expression> from the start or
from the given start position when <numeric value expression> is used.

TRI M ARRAY <left paren> <array value expression> <conme> <nuneric value
expressi on> <ri ght paren>

The TRIM_ARRAY function returns a copy of an array with the specified number of elements removed from the end
of thearray. The<array val ue expressi on> can beany expression that evaluatesto an array.

SORT_ARRAY <l eft paren> <array value expression> [{ ASC | DESC }] [NULLS
{ FIRST | LAST }] <right paren>

The SORT_ARRAY function returns a sorted copy of an array. NULL elements appear at the beginning of the new
array. You can change the sort direction or the position of NULL elements with the option keywords.

CAST

An array can be cast into an array of a different type. Each element of the array is cast into the element type of the
target array type.

UNNEST
Arrays can be converted into table references with the UNNEST keyword.
UNNEST(<array val ue expression>) [WTH ORDI NALI TY]

The<array val ue expressi on> can be any expression that evaluates to an array. A table is returned that
contains one column when WITH ORDINALITY is not used, or two columns when WITH ORDINALITY is used.
The first column contains the elements of the array (including all the nulls). When the table has two columns, the
second column contains the ordinal position of the element in the array. When UNNEST is used in the FROM clause
of aquery, it impliesthe LATERAL keyword, which meansthe array that is converted to table can belong to any table
that precedes the UNNEST in the FROM clause. Thisis explained in the Data Access and Change chapter.

INLINE CONSTRUCTOR

Array constructors can be used in SELECT and other statements. For example, an array constructor with a subquery
can return the values from several rows as one array.

The example below showsan ARRAY constructor with a correlated subquery to return the list of order valuesfor each
customer. The CUSTOMER table that isincluded for testsin the DatabaseM anager GUI app is the source of the data.

SELECT FI RSTNAME, LASTNAME, ARRAY(SELECT | NvVO CE. TOTAL FROM | N\VO CE WHERE CUSTOMERI D =
CUSTOVER. | D) AS ORDERS FROM CUSTOMER

FI RSTNAME LASTNAME ORDERS

Laur a St eel ARRAY[2700. 90, 4235. 70]
Rober t Ki ng ARRAY[4761. 60]

Rober t Sommer ARRAY[]

M chael Smith ARRAY[3420. 30]

29

HyperS@L SQL Language

COMPARISON

Arrays can be compared for equality, but they cannot be compared for ordering values or range comparison. Array
expressions are therefore not allowed in an ORDER BY clause, or in a comparison expression such as GREATER
THAN. It is possible to define a UNIQUE constraint on acolumn of ARRAY type. Two arrays are equal if they have
the same length and the values at each index position are either equal or both NULL.

USER DEFINED FUNCTIONS and PROCEDURES

Array parameters, variables and return values can be specified in user defined functions and procedures, including
aggregate functions. An aggregate function can return an array that contains all the scalar values that have been
aggregated. These capabilities allow awider range of applications to be covered by user defined functions and easier
data exchange between the engine and the user's application.

Indexes and Query Speed

HyperSQL supports PRIMARY KEY, UNIQUE and FOREIGN KEY constraints, which can span multiple columns.

Theengine createsindexesinternally to support PRIMARY KEY, UNIQUE and FOREIGN KEY constraints: aunique
index is created for each PRIMARY KEY or UNIQUE constraint; an ordinary index is created for each FOREIGN
KEY constraint.

HyperSQL alows defining indexes on single or multiple columns. You should not create duplicate user-defined
indexes on the same column sets covered by constraints. This would result in unnecessary memory and speed
overheads. See the discussion in the Deployment Guide chapter for more information.

Indexes are crucial for adequate query speed. When range or equality conditionsareused e.g. SELECT ... WHERE
acol > 10 AND bcol = 0, anindex should exist on one of the columns that has a condition. In this example,
thebcol columnisthe best candidate. HyperSQL always uses the best condition and index. If there are two indexes,
one on acol, and another on bcol, it will choose the index on bcol.

Queries aways return results whether indexes exist or not, but they return much faster when an index exists. Asarule
of thumb, HSQLDB is capable of internal processing of queries at over 100,000 rows per second. Any query that runs
into several secondsis clearly accessing thousands of rows. The query should be checked and indexes should be added
to the relevant columns of the tables if necessary. The EXPLAI N PLAN FOR <quer y> statement can be used to
see which indexes are used to process the query.

When executing aDELETE or UPDATE statement, the engine needs to find the rows that are to be del eted or updated.
If there is an index on one of the columns in the WHERE clausg, it is often possible to start directly from the first
candidate row. Otherwise al the rows of the table have to be examined.

Indexes are even more important in joins between multipletables. SELECT ... FROMt1 JONt2 ONtl.cl
= t2.c2 isperformed by taking rows of t1 one by one and finding a matching row in t2. If there is no index on
t2.c2 then for each row of t1, al the rows of t2 must be checked. Whereas with an index, amatching row can be found
in afraction of the time. If the query also has a condition on t1, eg., SELECT ... FROM t1 JON t2 ON
tl.cl = t2.¢c2 WHERE t1.c3 = 4 then anindex on tl.c3 would eliminate the need for checking all the
rows of t1 one by one, and will reduce query time to less than a millisecond per returned row. So if t1 and t2 each
contain 10,000 rows, the query without indexes involves checking 100,000,000 row combinations. With an index on
t2.c2, thisis reduced to 10,000 row checks and index lookups. With the additional index on t2.c2, only about 4 rows
are checked to get the first result row.

Note that in HSQLDB an index on multiple columns can be used internally as a non-unique index on the first column
in the list. For example: CONSTRAI NT nanel UNIQUE (cl, c2, c3); meansthereisthe equivalent of
CREATE | NDEX nane2 ON atabl e(cl); . Soyoudo not need to specify an extraindex if you require one
on the first column of thelist.

30

HyperS@L SQL Language

In HyperSQL 2, a multi-column index will speed up queries that contain joins or values on the first n columns of the
index. Y ou need NOT declare additional individual indexes on those columns unless you use queries that search only
on a subset of the columns. For example, rows of atable that hasa PRIMARY KEY or UNIQUE constraint on three
columns or simply an ordinary index on those columns can be found efficiently when values for all three columns, or
the first two columns, or the first column, are specified in the WHERE clause. For example, SELECT ... FROM
tl WHERE t1.c1 =4 ANDt1.c2 =6 ANDt1.c3 = 8 willuseanindexont 1(c1, c2, c3) ifitexists.

A multi-columnindex will not speed up queries on the second or third column only. Thefirst column must be specified
inthe JOIN .. ON or WHERE conditions.

Sometimes query speed depends on the order of thetablesin the JOIN .. ON or FROM clauses. For exampl e the second
query below should be faster with large tables (provided thereisan index on TB. COL3). Thereasonisthat TB. COL3
can be evaluated very quickly if it appliesto the first table (and thereis an index on TB. COL3):

-- TBis a very large table with only a few rows where TB.COL3 = 4

SELECT * FROM TA JO N TB ON TA. COL1
SELECT * FROM TB JO N TA ON TA. COL1

TB. COL2 AND TB. COL3
TB. COL2 AND TB. COL3

Thegeneral ruleisto put first thetable that has anarrowing condition on one of its columns. In certain cases, HyperSQL
2.2.x reorders the joined tablesiif it is obvious that this will introduce a narrowing condition.

HyperSQL features automatic, on-the-fly indexes for views and subselects that are used in a query.
Indexes are used when a LIKE condition searches from the start of the string.

Indexes are used for ORDER BY clauses if the same index is used for selection and ordering of rows. It is possible
to force the use of index for ORDER BY.

Query Processing and Optimisation

HyperSQL changes the order of tablesin aquery in order to optimise processing. This happens only when one of the
tables has a narrowing condition and reordering does not change the result of the query.

Indexes and Conditions

HyperSQL optimises queries to use indexes, for all types of range and equality conditions, including IS NULL and
NOT NULL conditions. Conditions can bein join or WHERE clauses, including all types of joins.

In addition, HyperSQL will use an index (if one exists) for IN conditions, whether constants, variable, or subqueries
are used on the right-hand side of the IN predicate. Multicolumn IN conditions can also use an index.

HyperSQL can always useindexeswhen several conditions are combined with the AND operator, choosing acondition
which can use an index. This now extended to all equality conditions on multiple columns that are part of an index.

HyperSQL will also use indexes when several conditions are combined with the OR operator and each condition can
use an index (each condition may use a different index). For example, if a huge table has two separate columns for
first name and last name, and both columns are indexed, a query such as the following example will use the indexes
and completein ashort time:

-- TCis a very large table

SELECT * FROM TC WHERE TC. FI RSTNAME = ' John' OR TC. LASTNAME = 'Smith' OR TC LASTNAME =
"WIllians'

Each subquery is considered a separate SELECT statement and uses indexes when they are available.

31

HyperS@L SQL Language

In each SELECT statement, at least one index per table can be used if there is a query conditions that can use the
index. When conditions on a table are combined with the OR operator, and each condition can use an index, multiple
indexes per table are used.

Indexes and Operations

HyperSQL optimises simple row count queriesin the form of SELECT COUNT(*) FROM <t abl e> and returns
the result immediately (this optimisation does not take place in MV CC mode).

HyperSQL can use an index on a column for SELECT MAX(<col um>) FROM <tabl e> and SELECT
M N(<col utm>) FROM <t abl e> queries. There should be an index on the <column> and the query can have a
WHERE condition on the same column. In the example below the maximum value for the TB.COL 3 below 1000000
is returned.

‘ SELECT MAX(TB. COL3) FROM TB WHERE TB. COL < 1000000 ‘

HyperSQL can use an index for simple queries containing DISTINCT or GROUP BY to avoid checking all the rows
of the table. Note that indexes are always used if the query has a condition, regardless of the use of DISTINCT or
GROUP BY. This particular optimisation applies to cases in which all the columns in the SELECT list are from the
same table and are covered by asingle index, and any join or query condition uses thisindex.

For example, with the large table below, aDISTINCT or GROUP BY query to return al the last names, can use an the
index on the TC.LASTNAME column. Similarly, a GROUP BY query on two columns can use an index that covers
the two columns.

-- TCis a very large table

SELECT DI STI NCT LASTNAME FROM TC WHERE TC. LASTNAME > ' F
SELECT STATE, LASTNAME FROM TC GROUP BY STATE, LASTNAME

Indexes and ORDER BY, OFFSET and LIMIT

HyperSQL can use an index on an ORDER BY clause if all the columns in ORDER BY are in a single-column or
multi-column index (in the exact order). Thisisimportant if thereisaLIMIT n (or FETCH n ROWS ONLY) clause.
In this situation, the use of index allows the query processor to access only the number of rows specifiedinthe LIMIT
clause, instead of building the whole result set, which can be huge. Thisalso worksfor joined tableswhen the ORDER
BY clauseison the columns of thefirst tablein ajoin. Indexes are used in the same way when ORDER BY ... DESC
is specified in the query. Note that unlike some other RDBMSS, HyperSQL does not need or create DESC indexes. It
can use any ordinary, ascending index for ORDER BY ... DESC.

If there is an equality or range condition (e.g. EQUALS, GREATER THAN) condition on the columns specified in
the ORDER BY clause, the index is till used.

In the two examples below, the index on TA.COL 3 is used and only up to 1000 rows are processed and returned.

-- TAis avery large table with an i ndex on TA CO.3

SELECT * FROM TA JON TB ON TA COL2 = TB. COL1 WHERE TA. COL3 > 40000 ORDER BY TA. COL3 LIM T 1000;
SELECT * FROM TA JON TB ON TA. COL2 = TB. COL1 WHERE TA. COL3 > 40000 AND TA. COL3 < 100000 ORDER
BY TA. COL3 DESC LIM T 1000;

But if the query contains an equality condition on another indexed column in the table, this may take precedence and
no index may be used for ORDER BY'. In this case USING INDEX can be added to the end of the query to force the
use of theindex for the LIMIT operation. In the example below thereisan index on TA.COL 1 aswell asthe index on
TA.COL3. Normally the index on TA.COL1 is used, but the USING INDEX hint results in the index on TB.COL3
to be used for selecting the first 1000 rows.

32

HyperS@L SQL Language

-- TAis a very large table with an index on TA.COL3 and a separate index on TA COL1

SELECT * FROM TA JON TB ON TA. COL2 = TB. COL1 WHERE TA. COL1 = ' SENT' AND TB. COL3 > 40000 ORDER
BY TB. COL3 LIMT 1000 USI NG | NDEX;

33

HyperS@L

Chapter 3. Sessions and Transactions

Fred Toussi, The HSQL Development Group
$Revision: 5999 $

Copyright 2010-2019 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2019-06-02

Overview

All SQL statements are executed in sessions. When a connection is established to the database, a session is started.
The authorization of the session isthe name of the user that started the session. A session has several properties. These
properties are set by default at the start according to database settings.

SQL Statements are generaly transactional statements. When a transactional statement is executed, it starts a
transaction if no transaction is in progress. If SQL Data (data stored in tables) is modified during a transaction, the
change can be undone with a ROLLBACK statement. When a COMMIT or ROLLBACK statement is executed, the
transaction is ended. Each SQL statement works atomically: it either succeeds or fails without changing any data. If
asingle statement fails, an error is raised but the transaction is not normally terminated. However, some failures are
caused by execution of statements that are in conflict with statements executed in other concurrent sessions. Such
failures result in an implicit ROLLBACK, in addition to the exception that is raised.

Schema definition and manipulation statements are also transactional according to the SQL Standard. HyperSQL
performs automatic commits before and after the execution of such transactions. Therefore, schema-related statements
cannot berolled back. Thisislikely to changein future versions.

Some statements are not transactional. Most of these statements are used to change the properties of the session. These
statements begin with the SET keyword.

If the AUTOCOMMIT property of a session is TRUE, then each transactional statement is followed by an implicit
COMMIT.

The default isolation level for a session is READ COMMITTED. This can be changed using the JDBC
j ava. sgl . Connecti on object and its set Tr ansact i onl sol ati on(int | evel) method. The session
can be put in read-only mode using the set ReadOnl y(bool ean readOnl y) method. Both methods can be
invoked only after acommit or arollback, but not during a transaction.

Theisolation level and / or the readonly mode of atransaction can also be modified using an SQL statement. Y ou can
use the statement to change only the isolation mode, only the read-only mode, or both at the sametime. This statement
can be issued only before atransaction starts or after a commit or rollback.

SET TRANSACTION <transaction characteristic> | <coma> <transaction
characteristic>]

This statement is described in detail later in this chapter.

Session Attributes and Variables

Each session has several system attributes. A session can also have user-defined session variables.

34

HyperS@L Sessions and Transactions

Session Attributes

The system attributes reflect the current mode of operation for the session. These attributes can be accessed with
function calls and can be referenced in queries. For example, they can be returned using the VALUES <attri bute
function>, ... statement.

The named attributes such as CURRENT_USER, CURRENT_SCHEMA, etc. are SQL Standard functions. Other
attributes of the session, such as auto-commit or read-only modes can be read using other built-in functions. All these
functions are listed in the Built In Functions chapter.

Session Variables

Session variables are user-defined variables created the same way asthe variablesfor stored procedures and functions.
Currently, these variables cannot be used in general SQL statements. They can be assigned to IN, INOUT and OUT
parameters of stored procedures. This allows calling stored procedures which have INOUT or OUT arguments and
is useful for development and debugging. See the example in the SQL-Invoked Routines chapter, under Formal
Parameters.

Example 3.1. User-defined Session Variables

DECLARE counter | NTEGER DEFAULT 3;
DECLARE result VARCHAR(20) DEFAULT NULL;
SET count er =15;

CALL nyroutine(counter, result)

Session Tables

With necessary access privileges, sessions can access al table, including GLOBAL TEMPORARY tables, that are
defined in schemas. Although GLOBAL TEMPORARY tables have a single name and definition which appliesto all
sessions that use them, the contents of the tables are different for each session. The contents are cleared either at the
end of each transaction or when the session is closed.

Session tables are different because their definition isvisible only within the session that definesatable. The definition
is dropped when the onisclosed. Session tables do not belong to schemas.

<tenporary table declaration> ::= DECLARE LOCAL TEMPORARY TABLE <table nane>
<table element list>] ON COWM T { PRESERVE | DELETE } RO\S]

The syntax for declaration is based on the SQL Standard. A session table cannot have FOREIGN KEY constraints,
but it can have PRIMARY KEY, UNIQUE or CHECK constraints. A session table definition cannot be modified by
adding or removing columns, indexes, etc.

Itis possibleto refer to a session table using its name, which takes precedence over a schematable of the same name.
To distinguish a session table from schema tables, the pseudo schema names, MODULE or SESSION can be used.
An example is given below:

Example 3.2. User-defined Temporary Session Tables

DECLARE LOCAL TEMPORARY TABLE buffer (id |INTEGER PRI MARY KEY, textdata VARCHAR(100)) ON COW T
PRESERVE ROWNS

I NSERT | NTO nodul e. buf fer SELECT id, firstnane || ' ' || |astnane FROM custoners

-- do sone nore work

DROP TABLE nodul e. buf fer

-- or use alternative pseudo schema nane

DROP TABLE sessi on. buf fer

35

HyperS@L Sessions and Transactions

Session tables can be created inside a transaction. Automatic indexes are created and used on session tables when
necessary for a query or other statement. By default, session table data is held in memory. This can be changed with
the SET SESSI ON RESULT MEMORY ROWS statement.

Transactions and Concurrency Control

HyperSQL 2 has been fully redesigned to support different transaction isolation models. It no longer supports the old
1.8.x model with "dirty read". Although it is perfectly possible to add an implementation of the transaction manager
that supports the legacy model, we thought this is no longer necessary. The new system allows you to select the
transaction isolation model while the engine is running. It also alows you to choose different isolation levels for
different simultaneous sessions.

HyperSQL 2 supports three concurrency control models: two-phase-locking (2PL), which is the default, multiversion
concurrency control (MVCC) and a hybrid model, which is 2PL plus multiversion rows (MVLOCKS). Within
each model, it supports some of the 4 standard levels of transaction isolation. READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ and SERIALIZABLE. The concurrency control model is a strategy that
governsall the sessionsand is set for the database, as opposed for individual sessions. Theisolation level isaproperty
of each SQL session, so different sessions can have different isolation levels. In the new implementation, all isolation
levels avoid the "dirty read" phenomenon and do not read uncommitted changes made to rows by other transactions.

HyperSQL is fully multi-threaded in all transaction models. Sessions continue to work simultaneously and can fully
utilise multi-core processors.

Each active session has a separate thread. When the database is run as a server, HyperSQL allocates and manages
the threads. In in-process databases, sessions are accessed indirectly via JDBC connections. Each connection must be
accessed via the same thread in the user application for the duration of atransaction. In in-process databases, if the
user application interrupts the thread that is executing SQL statements, the interrupt is cleared by HyperSQL if it is
caught. Y ou can changethiswith SET DATABASE TRANSACTION ROLLBACK ON INTERRUPT TRUE toforce
the transaction to roll back on interrupt and keep the interrupted state of the thread.

The concurrency control model of alive database can be changed. The SET DATABASE TRANSACTI ON CONTRCL
{ LOCKS | MVLOCKS | MVCC } canbe used by auser with the DBA role.

Two Phase Locking

The two-phase locking model is the default mode. It is referred to by the keyword, LOCKS. In the 2PL model, each
table that isread by atransaction islocked with ashared lock (read lock), and each table that iswritten to islocked with
an exclusive lock (write lock). If two sessions read and modify different tables then both go through simultaneoudly.
If one session triesto lock atable that has been locked by the other, if both locks are shared locks, it will go ahead. If
either of the locksis an exclusive lock, the engine will put the session in wait until the other session commits or rolls
back its transaction. The engine will throw an error if the action would result in deadlock.

HyperSQL also supports explicit locking of a group of tables for the duration of the current transaction. Use of this
command blocks accessto thelocked tablesby other onsand ensuresthe current session can complete theintended
reads and writes on the locked tables.

If atableisread-only, it will not be locked by any transaction.

The READ UNCOMMITTED isolation level can be used in 2PL modes for read-only operations. It is the same as
READ COMMITTED plusread only.

The READ COMMITTED isolation level isthe default. It keeps write locks on tables until commit, but releases the
read locks after each operation.

The REPEATABLE READ leve is upgraded to SERIALIZABLE. These levels keep both read and write locks on
tables until commit.

36

HyperS@L Sessions and Transactions

It is possible to perform some critical operations at the SERIALIZABLE level, while the rest of the operations are
performed at the READ COMMITTED level.

Note: two phase locking refers to two periods in the life of atransaction. In the first period, locks are acquired, in the
second period locks are released. No new lock is acquired after releasing alock.

Two Phase Locking with Snapshot Isolation

Thismodel isreferred to as MVLOCKS. It works the same way as normal 2PL as far as updates are concerned.

SNAPSHOT ISOLATION isamultiversion concurrency strategy which uses the snapshot of the whole database at the
time of the start of the transaction. In this model, read only transactions use SNAPSHOT ISOLATION. While other
sessions are busy changing the database, the read only session sees a consistent view of the database and can access
all the tables even when they are locked by other sessions for updates.

There are many applications for this mode of operation. In heavily updated data sets, this mode allows uninterrupted
read access to the data.

Lock Contention in 2PL

When multiple connections are used to access the database, the transaction manager controls their activities. When
each transaction performs only reads or writes on asingle table, there is no contention. Each transaction waits until it
can obtain alock then performs the operation and commits. Contentions occur when transactions perform reads and
writes on more than one table, or perform aread, followed by awrite, on the same table.

For example, when sessions are working at the SERIALIZABLE level, when multiple sessionsfirst read from atable
in order to check if arow exists, then insert a row into the same table when it doesn't exist, there will be regular
contention. Transaction A reads from the table, then does Transaction B. Now if either Transaction A or B attempts
to insert a row, it will have to be terminated as the other transaction holds a shared lock on the table. If instead of
two operations, a single MERGE statement is used to perform the read and write, no contention occurs because both
locks are obtained at the sametime.

Alternatively, there is the option of obtaining the necessary locks with an explicit LOCK TABLE statement. This
statement should be executed before other statements and should include the names of al the tables and the locks
needed. After this statement, all the other statements in the transaction can be executed and the transaction committed.
The commit will remove all the locks.

HyperSQL detects deadlocks before attempting to execute a statement. When alock is released after the completion
of the statement, the first transaction that is waiting for the lock is allowed to continue.

HyperSQL is fully multi threaded. It therefore allows different transactions to execute concurrently so long as they
are not waiting to lock the same table for write.

Locks in SQL Routines and Triggers

In both LOCKS and MVLOCKS models, SQL routines (functions and procedures) and triggers obtain al the read
and write locks at the beginning of the routine execution. SQL statements contained in the routine or trigger are all
executed without deadlock as all thelocks have already been obtained. At the end of execution of the routine or trigger,
read locks are released if the session isolation level is READ COMMITTED.

MVCC

In the MV CC model, there are no shared, read locks. Exclusive locks are used on individual rows, but their use
is different. Transactions can read and modify the same table simultaneously, generally without waiting for other
transactions. The SQL Standard isolation levels are used by the user's application, but these isolation levels are
translated to the MV CC isolation levels READ CONSISTENCY or SNAPSHOT ISOLATION.

37

HyperS@L Sessions and Transactions

When transactions are running at READ COMMITTED level, no conflict will normally occur. If a transaction that
runs at this level wants to modify arow that has been modified by another uncommitted transaction, then the engine
puts the transaction in wait, until the other transaction has committed. The transaction then continues automatically.
Thisisolation level is called READ CONSISTENCY.

Deadlock is completely avoided by the engine. The database setting, SET DATABASE TRANSACTION
ROLLBACK ON CONFLICT, determines what happensin case of deadlock. In theory, conflict (deadlock) ispossible
if each transaction iswaiting for adifferent row modified by the other transaction. In this case, one of the transactions
is immediately terminated by rolling back all the previous statements in the transaction in order to alow the other
transaction to continue. If the setting has been changed to FALSE with the <set dat abase transaction
rol Il back on conflict statenent>, the session that avoided executing the deadlock-causing statement
returnsan error, but without rolling back the previous statementsin the current transaction. This session should perform
an alternative statement to continue and commit or roll back the transaction. Once the session has committed or rolled
back, the other session can continue. This alows maximum flexibility and compatibility with other database engines
which do not roll back the transaction upon deadlock.

When transactions are running in REPEATABLE READ or SERIALIZABLE isolation levels, conflict ismore likely
to happen. There is no difference in operation between these two isolation levels. This isolation level is called
SNAPSHOT ISOLATION.

In this mode, when the duration of two transactions overlaps, if one of the transactions has modified a row and the
second transaction wants to modify the same row, the action of the second transaction will fail. This happens even
if the first transaction has already committed. The engine