
NORM Pre-Coder (npc) Usage Notes

Background
The NACK-Oriented Reliable Multicast (NORM) protocol is capable of supporting
robust transmission of content to "silent" receivers that are required or only capable of
operating in an emission-controlled (EMCON) manner. This capability is enabled when
the NORM sender is configured to proactively transmit Forward Error Correction (FEC)
erasure coding content as part of its original data transmission. For NACK-based
operation, the FEC repair packets are usually sent only reactively, in response to repair
requests (NACKs) from the receiver group. However, hybrid operation with a
combination of proactive FEC content and additional reactive FEC repairs as needed is
also supported. Similarly, a mix of nacking and silent receivers may be supported with
silent receivers capitalizing on the FEC repair information sent proactively and/or
reactively. The purpose of the NORM Pre-Coder (npc) software utility described here is
to support additional robustness for purely-proactive sessions, where the receivers are
unable to request repair or retransmission of content.

The Naval Research Laboratory (NRL) reference implementation of the NORM protocol
includes support for 8-bit (and very soon 16-bit) Reed-Solomon FEC encoding with
additional support for other coding algorithms (e.g., Low-Density Parity Check (LDPC))
planned for the future. The NORM specification allows for different FEC algorithms to
be applied within the protocol. The current Reed-Solomon NORM FEC algorithms in the
NRL implementation are limited to modest code block sizes (With 16-bit Reed-Solomon
coding, larger block sizes will be allowed but very high data rates may not be possible).
For channels with random errors, the current NORM FEC codecs are often adequate as
there is flexibility in how the encoded data can be partitioned into FEC blocks (a block
consists of some number of data segments (packets)) and the number of FEC parity
packets that can computed and possibly transmitted per source data block. For channels
with large bursts of packet loss (with respect to the configured NORM FEC block size), it
is quite possible that the number of lost packets (erasures) that occur within a NORM
FEC block may exceed the configured erasure-filling capability. The npc utility was
created to "pre-encode" (and "post-decode") files for NORM transmission to silent (non-
NACKing) receivers by adding additional FEC encoding, and importantly, interleaving of
the FEC segments (packets) to re-distribute bursts of packet losses as random losses over
the entire file. It is thus most applicable to very large files (with respect to FEC block
sizes).

Overview
The npc utility takes, as input", a file and logically divides it into segments, adding
cyclic-redundancy checksum (CRC) to the segments, encoding the source segments with
Reeed-Solomon encoding (adding a configurable number of parity segments per FEC
source block), and interleaves the source and encoding segments to an output file. The
use of the CRC allows erasure to be detected and also provides additional assurance of
correct content delivery by possibly detecting bit errors that may have been undetected
during transport (i.e., link-layer framing, Internet Protocol (IP), and/or User Datagram

Protocol (UDP) checksums). The interleaving by default is a block interleaver using the
entire file as a logical block, but a limit on the interleaving size can be set to help increase
the speed of the npc encoding/decoding process. This may be useful for extremely large
file sizes.

Usage and Examples
The following is a synopsis of npc usage:
npc {encode|decode} input <inFile> [output <outFile>]
 [segment <segmentSize>][block numData][parity numParity]
 [imax <widthLimit>][ibuffer <bytes>]
 [background][help][debug <debugLevel>

The npc utility may be instructed to either "encode" a file (add FEC content and
interleaving to the given <inFile>) or "decode" a file that was previously encoded
with npc. The ".npc" file extension is suggested to delineate files that are of the npc
encoded format. Note the "output" filename is optional. By default, npc will use the
filename of the <inFile> as the output filename, replacing the '.' extension delimiter
with a '_' (underscore) and adding the ".npc" extension suffix. The npc format includes
some minimal "meta-data" in the first encoded <segmentSize> to convey the file size and
name of the original file. On decoding, if the "output" file option is omitted, this
"meta-data" is used to name the decoded output file.
The optional FEC parameters, <segmentSize>, <numData>, and <numParity>
control the logical segmentation, blocking, and amount of FEC parity content added to
the file. For use with NORM, it is recommended that the <segmentSize> value
correspond to the same segmentation size used for NORM transmission. The
<numData> (source segments per FEC encoding block) and <numParity>
parameters should be selected to provide erasure filling coverage for the expected
transmission packet loss characteristics. Note that when used with proactive NORM FEC
transmission, the npc encoding provides an "inner" FEC code and interleaving and the
NORM protocol provides an "outer" FEC encoding. The "outer" NORM code might be
configured to deal with typical random packet loss due to channel BER, etc and the
"inner" npc interleaving and coding could be correspondingly configured to handle
expected burst losses (e.g. outages) that might occur.
To encode a file name "originalFile.txt" with the default npc naming convention,
FEC, and interleaving parameters, use the following syntax:
npc encode input originalFile.txt

This will produce and output file named "originalFile_txt.npc" in the current
working directory,

The original file can be recovered (decoded) using the syntax:
npc decode input originalFile_txt.npc

This will decode the ".npc" file, and in this case produce a file named
"originalFile.txt" in the current working directory. (The file name information

was stored in first segment of the ".npc" file). This default naming convention can be
overridden by using the npc "output" option. For example, the syntax:
npc decode input originalFile_txt.npc output file.txt

This will produce a file named "file.txt" that is identical in content to
"originalFile.txt".

Notes
The FEC and interleaving parameters that are used for npc encoding MUST be exactly
matched to successfully decode the encoded file. I.e., if the defaults are used for
encoding, the defaults must be used for decoding. The parameters that must match
include <segmentSize>, <numData>, <numParity>, and <widthMax>.

It is possible that in some cases it may be beneficial to apply more proactive FEC content
with the npc program instead of with the NORM transport. The trade-offs are scenario-
specific.
The NRL "norm" demonstration application now has options included to support
transport of npc encoded files. The distinction here is that a file that _fails_ NORM
transport might still be successfully decoded with npc. There are two receiver-side norm
demo application options that apply here:

1) The "saveAborts" option causes norm to not delete (and attempt to post-
process) "aborted" files (files that failed reliable NORM transport).

2) The norm "lowDelay" option should be applied for silent-receivers to more
immediately deliver "failed" files to the application for post-processing (i.e.,
attempted npc decoding)

npc Command Reference
The following table describes each of the npc command-line options
encode | decode Determine whether npc is to encode or decode the given <inFile>.

This option is required and only one should be given.

input <inFile> Specifies the file to be processed. Required option.

output <outFile> Specifies the name of the output file to be produced. Overrides the
default npc naming convention. Optional.

segment <segmentSize> Sets the segmentation size (packet size) in bytes. Four bytes of the
<segmentSize> are used for a 32-bit CRC that npc applies to each
segment.
(Default is 1024 bytes)

block <numData> Specify the number of source data segments (packets) per npc FEC
coding block.
(Default is 98 segments).

parity <numParity> Specify the number of FEC parity segments (packets) added per npc
FEC coding block.
(Default is 2 segments).

imax <widthMax> Limits interleaving of encoded file to a maximum interleaver width of
<widthMax> segments. A value of ZERO (or less) defaults to npc
calculating a block interleaver that encompasses the entire encoded
file size. For extremely large files, this option may be beneficial to
limit file seeking operations required to interleave the file. If the
encoded file size is less than <widthMax>*<widthMax>
segments, npc will again calculate its own maximum block size.
(Default is 1000 segments interleaver depth (i.e., about 1Gbyte
interleaver size with the 1024 byte <segmentSize> value))

ibuffer <bufferSize> This sets the maximum memory (in bytes) that npc allocates for
encoding. A larger value allows npc to perform file input/output with
less seeking and improved encoding/decoding times can be achieved.
(Default is 1.5 GByte)

background Runs npc as a background process with no console window (Win32).

debug <debugLevel> Specifies debug output verbosity. Higher number is more verbose
debugging information.
(Default is ZERO).

help Displays npc usage.

